FW-30
 AUTOMATIC EXCITER SWITCHER

IMPORTANT INFORMATION

EQUIPMENT LOST OR DAMAGED IN TRANSIT.

When delivering the equipment to you, the truck driver or carrier's agent will present a receipt for your signature. Do not sign it until you have: 1) inspected the containers for visible signs of damage and 2) counted the containers and compared with the amount shown on the shipping papers. If a shortage or evidence of damage is noted, insist that notation to that effect be made on the shipping papers before you sign them.
Further, after receiving the equipment, unpack it and inspect thoroughly for concealed damage. If concealed damage is discovered, immediately notify the carrier, confirming the notification in writing, and secure an inspection report. This item should be unpacked and inspected for damage WITHIN 15 DAYS after receipt. Claims for loss or damage will not be honored without proper notification of inspection by the carrier.

RF PRODUCT TECHNICAL ASSISTANCE - REPAIR SERVICE - REPLACEMENT PARTS.

Technical assistance is available from Broadcast Electronics by letter, prepaid telephone, fax, or E-mail. Equipment requiring repair or overhaul should be sent by common carrier, prepaid, insured, and well protected. If proper shipping materials are not available, contact the Customer Service Department for a shipping container. Do not the mail equipment. We can assume no liability for inbound damage, and necessary repairs become the obligation of the shipper. Prior arrangement is necessary. Contact the Customer Service Department for a Return Authorization.
Emergency and warranty replacement parts may be ordered from the following address. Be sure to include the equipment model number, serial number, part description, and part number. Non-emergency replacement parts may be ordered directly from the Broadcast Electronics stock room by fax at the number shown below.

FACILITY CONTACTS -

Broadcast Electronics, Inc. - Quincy Facility
4100 N. 24th St. P.O. BOX 3606
Quincy, Illinois 62305
Telephone: (217) 224-9600
Fax: (217) 224-9607
E-Mail: General - bdcast@bdcast.com
Web Site: www.bdcast.com
RF PRODUCT TECHNICAL ASSISTANCE - REPAIR - EMERGENCY/WARRANTY REPLACEMENT PARTS -
Telephone: (217) 224-9600
E-Mail: rfservice@bdcast.com
Fax: (217) 224-9607
NON-EMERGENCY REPLACEMENT PARTS -
Fax: (217) 224-9609

RETURN, REPAIR, AND EXCHANGES.

Do not return any merchandise without our written approval and Return Authorization. We will provide special shipping instructions and a code number that will assure proper handling and prompt issuance of credit. Please furnish complete details as to circumstances and reasons when requesting return of merchandise. All returned merchandise must be sent freight prepaid and properly insured by the customer.

WARRANTY ADJUSTMENT.

Broadcast Electronics, Inc. warranty is included in the Terms and Conditions of Sale. In the event of a warranty claim, replacement or repair parts will be supplied F.O.B. factory. At the discretion of Broadcast Electronics, the customer may be required to return the defective part or equipment to Broadcast Electronics, Inc. F.O.B. Quincy, Illinois. Warranty replacements of defective merchandise will be billed to your account. This billing will be cleared by a credit issued upon return of the defective item.

PROPRIETARY NOTICE.

This document contains proprietary data of Broadcast Electronics, Inc. No disclosure, reproduction, or use of any part thereof may be made except by prior written permission.

MODIFICATIONS.

Broadcast Electronics, Inc. reserves the right to modify the design and specifications of the equipment in this manual without notice. Any modifications shall not adversely affect performance of the equipment so modified.

INSTRUCTION MANUAL

FW-30

AUTOMATIC EXCITER SWITCHER

MODEL

FW-30
PART NUMBER
909-0120-004

979-0054-004

979-0307

DESCRIPTION

Exciter switcher for a main/alternate exciter system, rack mount, 120 or 240 V ac, $50 / 60 \mathrm{~Hz}$.

Recommended spare parts kit for the FW-30. Does not include semiconductors.

Recommended spare semiconductor kit for the FW-30.

TABLE OF CONTENTS

PARAGRAPH

SECTION I

1-1
1-3
1-6
SECTION II
2-1
2-3
2-6
2-8
2-11
2-12
2-18
2-19
2-20
2-21
2-22
2-23
SECTION III
3-1
3-3
3-5
3-6
3-8
3-10
3-12
3-14
3-16
3-18
SECTION IV
4-1
4-3
4-4
4-14
4-16
4-18
4-19
4-21

GENERAL INFORMATION

Introduction $1-1$
Equipment Description
1-1
Equipment Specifications 1-1
INSTALLATION
Introduction $2-1$
Unpacking 2-1
Installation $2-1$
Placement $2-1$
Wiring 2-1
Exciter Control 2-1
Dummy Load Connection $\quad 2-4$
Circuit Board Programming 2-4
Remote Control 2-4
Power Supply $\quad 2-4$
Installation Adjustments 2-4
Switcher Threshold Adjustments 2-4
OPERATION
Introduction $3-1$
Controls and Indicators $3-1$
Operation $3-1$
Enable System 3-1
Muting $3-1$
Battery 3-1
Mode Selection 3-1
Exciter Selection 3-1
Local/Remote Operation 3-4
Disable System 3-4
THEORY OF OPERATION
Introduction 4-1
FW-30 Functional Description 4-1
Automatic Switching 4-1
Manual Switching 4-2
Remote Control 4-2
Remote/Local Switch 4-2
Power Failure Detection Circuit 4-2
Power Supply 4-5

SECTION V

5-1
5-3
5-5
5-7
5-9
5-11
5-14
5-15
5-17
5-19
5-20
5-23
5-24
5-30
SECTION VI
6-1

SECTION VII
7-1

MAINTENANCE

Introduction 5-1
Safety Considerations 5-1
First Level Maintenance $\quad 5-1$
General 5-1
Electrical $5-1$
Second Level Maintenance $\quad 5-1$
Electrical Adjustments $\quad 5-1$
+10.5V Regulator Adjustment 5-1
Battery Protect Adjustment 5-2
Power Failure Detect Adjustment 5-4
Troubleshooting 5-4
Monitor Output Connector 5-4
Component Replacement 5-4 Integrated Circuits 5-6
PARTS LISTS
Introduction 6-1

DRAWINGS

Introduction
7-1

LIST OF ILLUSTRATIONS

FIGURE NO.
DESCRIPTION
2-1
FW-30 Interfacing
PAGE NO.

2-2 FW-30 Circuit Board Jumper Programming
2-5
FW-30 Remote Interfacing \quad 2-6
FW-30 Control Logic Circuit Board Adjustments 2-7
$\begin{array}{lll}2-4 & \text { FW-30 Control Logic Circuit Board Adjustments } & 2-7 \\ 3-1 & \text { FW-30 Controls and Indicators } & 3-2\end{array}$
$\begin{array}{lll}2-4 & \text { FW-30 Control Logic Circuit Board Adjustments } & 2-7 \\ 3-1 & \text { FW-30 Controls and Indicators } & 3-2\end{array}$
4-1 FW-30 Simplified Schematic
4-3
5-1 FW-30 Control Logic Circuit Board Adjustments
5-2
5-2 Troubleshooting Tree. No Automatic Switching
Operation
FW-30 Monitor Output Connector

LIST OF TABLES

TABLE NO.

2-1 Remote Interface Connections
2-6
3-1 Automatic Exciter Switcher Controls and Indicators

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION.

1-2. Information presented in this section provides a general description of the FW-30 automatic exciter switcher and lists equipment specifications.

1-3. EQUIPMENT DESCRIPTION.

1-4. The Broadcast Electronics FW-30 automatic exciter switcher is designed to provide maximum flexibility for a main/alternate exciter system. The FW-30 features adjustable switching threshold and delay circuitry, automatic or manual switching operation, remote control, and remote status indication circuitry. The FW-30 will monitor the on-air exciter and automatically initiate a switching sequence if a fault is detected.
1-5. The FW-30 also features an automatic battery back-up system to provide memory retention in the event of a power failure. The batteries are protected from damage due to excessive discharge by a special monitor circuit.
1-6. EQUIPMENT SPECIFICATIONS.
1-7. Refer to Table 1-1 for electrical, physical, and environmental specifications of the FW-30 exciter switcher.

TABLE 1-1. FW-30 ELECTRICAL, PHYSICAL, AND ENVIRONMENTAL SPECIFICATIONS (Sheet 1 of 2)

PARAMETER	SPECIFICATION
ELECTRICAL POWER REQUIREMENTS: REMOTE INPUTS REMOTE OUTPUTS INTERNAL MEMORY EXCITER MUTING TRANSFER TIME SWITCHING CAPABILITY EXCITER TEST LOAD MONITOR PORT	96 V to 136 V ac or 194 V to 266 V ac, $50 / 60 \mathrm{~Hz}$. Negative or Positive Polarity, 5 to 28 volt ac or dc. Positive Logic. Retains operational configuration during power failures with battery back-up system enabled. Logic LOW required to mute. Logic HIGH required to enable (+15 V in Broadcast Electronics transmitters). Less than 1.0 second. 200 watts at 50 Ohms. 50 Watt continuous, $50 \mathrm{Ohms} \pm 5 \%$, Non-inductive. 2V RMS nominal 50 Ohms with 30 Watts RF from exciter.

BROADCAST ELECTRONICS INC

TABLE 1-1. FW-30 ELECTRICAL, PHYSICAL, AND ENVIRONMENTAL SPECIFICATIONS (Sheet 2 of 2)

PARAMETER	SPECIFICATION
PHYSICAL	
DIMENSIONS:	
WIDTH	19 Inches $(48.26 \mathrm{~cm})$.
DEPTH	15.25 Inches $(38.74 \mathrm{~cm})$.
HEIGHT	5.25 Inches 13.34 cm$).$
WEIGHT (PACKED)	25 Pounds (11.34 Kg).
ENVIRONMENTAL	+325 F to $+1225 \mathrm{~F}(05 \mathrm{C}$ to $+505 \mathrm{C})$.
OPERATING TEMPERATURE RANGE	95%, Non-condencing.
MAXIMUM HUMIDITY	15,000 Feet Above Sea Level (4572 Meters).
MAXIMUM ALTITUDE	

SECTION II
 INSTALLATION

2-1. INTRODUCTION.

2-2. This section contains information required for the installation and preliminary checkout of the Broadcast Electronics FW-30 automatic exciter switcher.

2-3. UNPACKING.

2-4. The equipment becomes the property of the customer when the equipment is delivered to the carrier. Carefully unpack the exciter switcher. Perform a visual inspection to determine that no apparent damage has been incurred during shipment. All shipping materials should be retained until it is determined that the unit has not been damaged. Claims for damaged equipment must be promptly filed with the carrier or the carrier may not accept the claim.
$2-5$. The contents of the shipment should be as indicated on the packing list. If the contents are incomplete, or if the unit is damaged electrically or mechanically, notify both the carrier and Broadcast Electronics, Inc.

2-6. INSTALLATION.

2-7. Each FW-30 exciter switcher is operated, tested, and inspected at the factory prior to shipment and is ready for installation when received. Prior to installation, this publication should be studied to obtain a thorough understanding of the operation, circuitry, nomenclature, and installation requirements. Installation is accomplished as follows: 1) placement, 2) wiring, and 3) installation adjustments.

2-8. PLACEMENT.

4 WARNING

DUE TO SMALL AMOUNTS OF GAS EMITTED FROM

 THE BATTERIES DURING HEAVY CHARGE AND WARNING DISCHARGE CYCLES, DO NOT INSTALL THE FW-30 NEAR ANY SOURCE OF OPEN FLAME OR SPARK.2-9. Due to minute amounts of gas emitted from the lead acid batteries during charge and discharge cycles, avoid installing the FW-30 in the proximity of open flame or spark.

2-10. The FW-30 requires 5 inches (12.7 cm) of a 19 inch cabinet and may be mounted in any convenient location within reach of control and power cables. An additional one inch of rack space above and below the unit should be provided for adequate cooling. The unit should not be mounted directly above or below heat-generating equipment, otherwise no special requirements need be observed.

2-11. WIRING.
2-12. EXCITER CONTROL. Refer to Figure 2-1 and connect the FW-30 exciter control wiring as follows.

1. BEI TRANSMITTERS CINNECT J1-21 पF FW-30 TD J2-6 PANEL IF TRANSMITTER CINTRLLLER
2. ather transmitters with EXTERNAL CDNTROL VDLTAGES $\mathrm{J} 1-21$ IF THE FW-30 REDUIRES
$\mathrm{A}+3$ TD +4OV TRANSITIDN

- Tu +4OV RANSITIU

3. DTHER TRANSMITTERS WITH NL EXTERNAL CUNTROL VDLTAGES CDNNECT A JUMPER BETWEEN
$\mathrm{J}-21$ AND $\mathrm{J} 1-25$ QF FW-30.
4. - - - - SLLID STATE TRANSMITTERS

WARNING

2-13. Disconnect all exciter system and transmitter primary power.
2-14. Connect the FW-30 exciter control wiring to the exciter 1 and exciter 2 rear-panel terminal strips. For FW-30 units used with FM-100C/FM-250C exciter systems, ensure control wires are connected between the P1 on the FW-30 and the coaxial switch as shown.
2-15. For Broadcast Electronics transmitters, refer to Figure 2-1 and connect J1-21 on the FW-30 to J2-6 on the transmitter controller. For other transmitters with external control voltages, $\mathrm{a}+3 \mathrm{~V}$ to +40 V transition must be applied to J1-21. For other transmitters with no external control voltages, connect a jumper between J1-21 and J1-25.
2-16. Connect the RF cabling between the exciters and the FW-30 as shown.
2-17. Attach exciter control connector P1 to receptacle J1 on the FW-30 rear-panel.
2-18. DUMMY LOAD CONNECTION. A 50 Ohm dummy load is provided for the off-air exciter output. Refer to Figure 2-1 and ensure a coaxial cable is connected between: 1) the DUMMY LOAD connector on the transfer switch and the test load for FX-50 exciter systems or 2) port 3 on the transfer switch and the test load for FM-100C/FM-250C exciter systems.
2-19. CIRCUIT BOARD PROGRAMMING. The FW-30 exciter switcher is programmed, operated, and tested at the factory prior to shipment. To assure the circuit board jumpers have not become dislodged during shipping, refer to Figure 2-2 and check the position of each jumper.
2-20. REMOTE CONTROL. FW-30 remote control and indication connections are provided on a rear-panel terminal strip. (Refer to Figure 2-3). Table 2-1 presents the FW-30 remote control and indication functions. Refer to Figure 2-3 and connect the remote control and indication wiring as required.

WARNING ENSURE ALL PRIMARY POWER IS DISCONNECTED BEFORE PROCEEDING.

WARNING

2-21. POWER SUPPLY. The FW-30 is programmed for the proper power supply voltage and frequency when shipped from the factory. If an alternate power source is required, re-program the unit by operating the voltage selector circuit board in the RFI filter and ac receptacle module to the desired position (refer to Figure 2-3). Ensure the power supply voltage to be used is visible from the ac voltage selector window and connect the line cord to an appropriate power source.
2-22. INSTALLATION ADJUSTMENTS.
2-23. SWITCHER THRESHOLD ADJUSTMENTS. Potentiometers R4 and R10 on the switcher logic circuit board adjust the switching threshold level for exciter 1 and exciter 2. The switching threshold levels are adjusted as follows.
2-24. Procedure. To adjust exciter 1 switching threshold level, proceed as follows:
A. Remove the FW-30 top-panel. Apply power to the exciter switcher.
B. Refer to Figure 2-4 and adjust exciter 1 threshold adjust R4 fully clockwise. Exciter 1 threshold indicator DS1 on the logic circuit board will illuminate.

LGGIC CIRCUIT BCARD SELECTDR P10
LGGIC CIRCUIT BCARD SELECTDR P10
JUMPER P10 MUST BE IN-
JUMPER P10 MUST BE IN-
STALLED IN POSITIGN 2-3.
STALLED IN POSITIGN 2-3.

DELAY TIME SELECT JUMPER
JUMPER PG MLST BE INSTALLED
IN POSITIUN 1-2. (. 05
SECDND DELAY).
SAMPLE LEVEL REDUCTIDN JUMPER
JUMPERS P7 AND P8 MUST
BE INSTALLED.

COPYRIGHT © 1990 BROADCAST ELECTRONICS, INC 597-0101-16
FIGURE 2-3. FW-30 REMOTE INTERFACING

TABLE 2-1. REMOTE INTERFACE CONNECTIONS

TB1	FUNCTION	DESCRIPTION	
1	Not Used \longrightarrow,		
2			
3	Manual Mode	Momentary connection to $\pm 5 \mathrm{~V}$ to $\pm 24 \mathrm{~V}$ required to activate function.	
4	Automatic Mode		
5	Exciter No. 1 Select	Typical Connections:	
6	Exciter No. 2 Select	$\begin{array}{ll}+24 \mathrm{~V} & \longleftarrow \\ \begin{array}{l}\text { To Control } \\ \text { Terminal }\end{array} & \longleftarrow\end{array}$	
7	Control Common (Isolated)		
	Common $\longleftarrow+{ }_{\text {ct }}$ Chassis		
8	Manual Status Automatic Status		
9			
10	Exciter No. 1 Status	Current sink to ground when active.	
11	Exciter No. 2 Status Status Common (Chassis Ground)		
12			
13	Auxiliary Relay		
14	+24 Volt		

C. Adjust the exciter 1 output power to the desired switching threshold level.
D. Adjust R4 until exciter 1 threshold indicator DS1 is extinguished.
E. To adjust exciter 2 switching threshold level, repeat the procedure using threshold adjust R10 and indicator DS2.
F. Replace the top-cover.

597-0101-19

FIGURE 2-4. FW-30 CONTROL LOGIC CIRCUIT BOARD ADJUSTMENTS

SECTION III
 OPERATION

3-1. INTRODUCTION.

3-2. This section identifies all controls and indicators associated with the Broadcast Electronics FW-30 Automatic Exciter Switcher and provides standard procedures.

3-3. CONTROLS AND INDICATORS.
3-4. Refer to Figure 3-1 for the location of all controls and indicators associated with normal operation of the FW-30 exciter switcher. The function of each control or indicator is described in Table 3-1.

3-5. OPERATION.

NOTE
NOTE
THE FOLLOWING PROCEDURE ASSUMES THAT THE EXCITER SWITCHER IS COMPLETELY INSTALLED AND IS FREE OF ANY DISCREPANCIES.

3-6. ENABLE SYSTEM.

3-7. To enable the system, apply primary power to the FW-30 automatic exciter switcher. Energize the transmitter(s) and both exciters.

3-8. MUTING.
3-9. Operate the front-panel MUTE switch to the NORMAL position to disable the exciters during a switching operation. The BY-PASS position enables the RF output of both exciters for testing purposes.
$3-10$. BATTERY.
3-11. Operate the rear-panel BATTERY ON/OFF switch to ON if battery back-up system operation is desired during a power failure. With the switch in the $\mathbf{O N}$ position, the batteries are continuously charged during normal operation.

3-12. MODE SELECTION.
3-13. If automatic switching is desired in the event of a failure, depress the front-panel AUTO MODE switch/indicator. In the automatic mode, manual operation of the switcher is also allowed. If only manual switching is desired when a fault occurs, depress the front-panel MANUAL MODE switch/indicator. The appropriate switch/indicator will illuminate when depressed.

3-14. EXCITER SELECTION.

3-15. To select exciter 1 as the operational unit, depress the front-panel EX-1 SELECT switch/ indicator. To select exciter 2 as the active unit, depress the EX-2 SELECT switch/indicator. The appropriate switch/indicator will illuminate when depressed.

597-0101-2
COPYRIGHt © 1990 broadcast Electronics, inc
FIGURE 3-1. FW-30 CONTROLS AND INDICATORS

TABLE 3-1. AUTOMATIC EXCITER SWITCHER CONTROLS AND INDICATORS

$\begin{aligned} & \text { INDEX } \\ & \text { NO. } \end{aligned}$	NOMENCLATURE	FUNCTION
1	REMOTE/LOCAL CONTROL Switch	Remote and local control is enabled when operated to REMOTE. Local control only is enabled when operated to LOCAL.
2	MANUAL MODE Switch/Indicator	SWITCH: Disables automatic switching circuitry. Allows only manual switching operation.
		INDICATOR: Indicates exciter switcher is in the manual mode when illuminated.
3	AUTO MODE Switch/Indicator	SWITCH: Enables automatic switching circuitry. Allows automatic and manualswitching operation.
		INDICATOR: Indicates exciter switcher is in the automatic mode when illuminated.
4	EX-1 SELECT Switch/Indicator	SWITCH: Selects exciter No. 1 for on-air operation when depressed.
		INDICATOR: Indicates exciter No. 1 is selected when Illuminated.
5	EX-2 SELECT Switch/Indicator	SWITCH: Selects exciter No. 2 for on-air operation when depressed.
		INDICATOR: Indicates exciter No. 2 is selected when illuminated.
6	NORMAL/BY-PASS MUTE Switch	Allows normal exciter muting (on-air exciter is operational; standby exciter is muted) when operated to NORMAL.
		When operated to BY-PASS, neither exciter is muted. Intended for exciter testing.
7	BATTERY ON/OFF Switch	Controls the battery back-up and charging system. The batteries are charged when the switch is in the ON position.

3-16. LOCAL/REMOTE OPERATION.

$3-17$. If external control of the exciter switcher is desired, operate the front-panel LOCAL/REMOTE switch to REMOTE. When the switch is in the remote position, both external and local control of the switcher is allowed. If only local control is desired, operate the REMOTE/LOCAL switch to LOCAL.

3-18. DISABLE SYSTEM.
$3-19$. The design of the automatic exciter switcher assumes that primary power will be applied continuously at all times. To disable the system, de-energize the transmitter(s) and both exciters.
$3-20$. If ac power must be removed from the automatic exciter switcher, operate the rear-panel BATTERY ON/OFF switch to OFF.

SECTION IV THEORY OF OPERATION

4-1. INTRODUCTION.

4-2. This section presents the theory of operation for the Broadcast Electronics FW-30 automatic exciter switcher. A simplified schematic of the FW-30 is presented in Figure 4-1. Refer to the simplified schematic as required for the following functional equipment description.
4-3. FW-30 FUNCTIONAL DESCRIPTION.
4-4. AUTOMATIC SWITCHING. The following information is presented with exciter 1 operating at a normal RF output level. Exciter 2 is muted and operating into the dummy load. The text describes the automatic process of switching exciter 2 into the system and exciter 1 into the dummy load when a fault occurs in exciter 1.
4-5. When the front-panel automatic mode switch or the remote automatic mode select switch is depressed, a logic LOW is applied to the input of an automatic/manual latch consisting of U15A and U15B. The latch will output a HIGH to inverters U14E/U16G and automatic enable gate U9B through diode D6. With a LOW from the inverters, the front-panel automatic mode indicator will illuminate. This LOW is also applied to optical isolator U29 which outputs a LOW to illuminate a remote automatic mode indicator.

4-6. With exciter 1 initially selected, the Q output of flip-flop U5A will apply a logic HIGH to NOR gate U13B and NAND gate U9C. The \bar{Q} output will apply a LOW to U13A and U9D.
4-7. A sample voltage from exciter 1 is routed through rear-panel D-connector J 1 to the input of integrated circuit comparators U1B and U1A. U1B is provided with a fixed bias for low RF level sensing. U1A is biased for a higher RF threshold level by potentiometer R4. When the sample voltage from exciter 1 decreases below the threshold level established by R4, U1A will output a LOW to inverter U2G. U2G applies a HIGH to NAND gate U9C and exciter 1 threshold indicator DS1 which extinguishes. With a HIGH from the Q output of flip-flop U5A and a HIGH from U2G, U9C will output a LOW to automatic control gate U9A. A LOW is also routed to delay timer U3/U4 through diode D1 and capacitor C5.

4-8. Timer U3/U4 will provide 0.05 seconds of delay to allow the exciter to recover before initiating a transfer command pulse. If the fault duration exceeds the delay time, U3/U4 will output a HIGH to automatic enable gate U9B.

4-9. With a LOW from U9C, U9A will route a HIGH to automatic enable gate U9B through diode D4. U9B will apply a LOW to exciter off gate U8C and inverter U11A. U11A applies a HIGH to the clock input of flip-flop U5A which changes logic states to generate the exciter 2 switching information. The switching information from U5A is routed to transfer gates U13A and U13B.

4-10. Exciter off gate U8C initiates the command which mutes both exciters prior to switching. With a LOW from U9B, U8C will output a HIGH to NOR gate U12B. U12B applies a LOW to timer U6 which outputs a HIGH to inverters U2A/U2C. The inverters route a LOW through diode/resistor network D48, D50, R94, R95, and the front-panel mute switch to the MUTE 1 and MUTE 2 terminals of the rear-panel D-connector. Exciter off indicator DS4 will momentarily illuminate to indicate the output of the exciter mute command.

4-11. When both exciters are muted, comparators U1B and U1D will apply a LOW to RF presence gate U12A. U12A outputs a HIGH to extinguish RF presence indicator DS3. This HIGH is also applied to inverter U10A which outputs a LOW to enable transfer gates U13A and U13B.
4-12. With U13A and U13B enabled, the switching information stored at flip-flop U5A will transfer to flip-flop U5B. A HIGH from U13B applied to the set input of U5B forces the Q output HIGH to bias switching transistors Q1 and Q2 ON. Q2 conducts and applies a LOW to coaxial switch S 2 which energizes to connect exciter 2 into the system and exciter 1 into the load. In addition, Q2 applies a LOW to rear-panel barrier strip TB1-13 for auxiliary relay control operation. Switching information from U5B is also routed to the switch position comparator logic.
4-13. The switch position comparator logic compares information from flip-flop U5B and the switch indicator contacts on S2 for a valid switching operation. When a valid transfer is recognized, a HIGH will be routed to inverters U10E/U16E and a LOW to inverters U10F/U16D. U10E/U16E will output a LOW to illuminate the front-panel EX-2 select indicator. This LOW is also applied to optical isolator U27 which outputs a HIGH to illuminate an external indicator. A HIGH from U10F/U16D is routed through diode/resistor network D49, R95, and the mute switch to the MUTE 2 terminal which enables exciter 2.

4-14. MANUAL SWITCHING. Manual selection of exciter 1 or exciter 2 is accomplished by the front-panel EX-1 and EX-2 SELECT switches and the associated circuitry. Exciter 1 and exciter 2 circuits are identical; therefore, only exciter 2 circuitry will be discussed.
4-15. When the front-panel EX-2 SELECT switch is depressed, a LOW is applied to inverter U14D. U14D outputs a HIGH to NOR gate U12C which outputs a LOW to exciter off gate U8C to mute the exciters. A HIGH is also applied to the clear input of flip-flop U5A which forces the $\overline{\mathrm{Q}}$ output HIGH to select exciter 2.
4-16. REMOTE CONTROL. External control of the FW-30 is provided by the remote control circuitry. All remote control circuits are identical; therefore, only the remote system off circuitry will be discussed.
4-17. The remote system off circuitry is routed from rear-panel barrier strip TB1-2 to optical isolator U21. When the remote switch is depressed, U21 generates a LOW to inverter U10B. U10B outputs a HIGH to NOR gate U12B which mutes both exciters.
4-18. REMOTE/LOCAL SWITCH. External control of the FW-30 is enabled or disabled by REMOTE/LOCAL switch S7 located on the front-panel. In the remote position, a control voltage is applied to the optical isolators to enable remote operation.
4-19. POWER FAILURE DETECTION CIRCUIT. A power failure detection circuit consisting of one-shots U30A/B, AND gate U8B/D, and inverters U11B/U16A is provided to prevent inadvertent transmitter switching in the event of a power failure. When ac power is applied to the unit, a full-wave rectified positive dc voltage is routed through level adjust potentiometer R100 to inverter U11B. U11B will output a LOW to one-shot U30A. The output of U30A will go HIGH which is inverted at U16A to illuminate indicator DS6.
4-20. When a power failure condition occurs, the output of U11B will go HIGH to trigger U30A. U30A will respond by routing a LOW to extinguish indicator DS6. The LOW is also routed to delay timer U3/U4 through AND gate U8B/D to maintain the transmitter switching logic in the current state. When ac power is restored, the output of U30A will go HIGH to illuminate indicator DS6 and trigger one-shot U30B. After a one second delay to allow the exciters to generate RF power, the output of U30B will go HIGH. The HIGH is ANDed with a HIGH from U30A at U8B/D to output a HIGH to delay timer U3/U4.

BRDADCAST ELECTRONICS INC

4-21. POWER SUPPLY. Primary power is applied to the FW-30 through the RFI filter and ac receptacle module. Power from the receptacle is routed to the primary of power transformer T1 to provide 13.2 volt and 25.5 volt ac potentials at the secondaries.
$4-22$. The 25.5 volt ac potential is routed to a full-wave rectifier and filter network and applied to voltage regulator U25. U25 provides a regulated +24 volt dc potential to the front-panel indicators and rear-panel barrier strip TB1-14 for remote control operation.

4-23. The 13.2 volt ac potential from T 1 is routed to a full-wave rectifier and filter network and applied to a voltage regulator circuit consisting of U2, resistor R76, and regulator adjust R74. The output of this circuit provides a regulated +10.5 volt dc potential to the input of a voltage regulator circuit consisting of U1, and resistors R77 and R79. The output of this circuit provides a regulated +5 volt dc potential for the control logic circuit board components. +10.5 volt dc potential is also routed to the battery back-up system.

4-24. A battery back-up system consisting of four 2 volt lead-acid cells is provided for memory retention in the event of a power failure. During normal operation and power failure conditions, relay K 1 is energized. If the rear-panel BATTERY ON/OFF switch is operated to the ON position, the batteries will be charged via the +10.5 volt de regulator circuit through the contacts of relay K1. In the event of a power failure, the batteries will provide input potential for the +5 volt dc regulator circuit and a sample voltage for the battery protection circuitry.

4-25. The battery protection circuitry consists of integrated circuit comparator U23, battery protection threshold adjust R69, transistor switch Q3, and relay K1. When a power failure occurs, the battery potential is applied to the input of U23. If the battery potential decreases below the threshold level established by potentiometer R69, U23 will output a LOW to bias Q3 OFF which disables relay K1.

SECTION V
 MAINTENANCE

5-1. INTRODUCTION.

5-2. This section provides general maintenance and troubleshooting information, electrical adjustment procedures, and component replacement procedures for the Broadcast Electronics FW-30 automatic exciter switcher.
$5-3$. SAFETY CONSIDERATIONS.
5-4. Low voltages are used throughout the FW-30 logic control circuit board. Several power supply components on the chassis contain primary ac line voltage. Therefore, do not perform any maintenance or troubleshooting procedures on the power supply circuitry with power applied. Maintenance with power energized is always considered hazardous and caution should be observed. Good judgment, care, and common sense must be practiced to prevent accidents. The procedures contained in this section should be performed only by experienced and trained personnel.

5-5. FIRST LEVEL MAINTENANCE.

5-6. First level maintenance consists of precautionary procedures applied to the equipment to prevent future failures. The procedures are performed on a regular basis and the results recorded in a performance log.

44 WARNING

DISCONNECT THE POWER SOURCE FROM THE EXCITER SWITCHER BEFORE ATTEMPTING ANY EQUIPMENT MAINTENANCE.

5-7. GENERAL.

5-8. Periodically remove any foreign substances from the FW-30 chassis with a cloth moistened with a mild household cleaner. Remove dust from the chassis exterior with a brush and vacuum cleaner as required.

5-9. ELECTRICAL.

5-10. The switcher circuit board should be periodically cleaned of accumulated dust using a soft brush and vacuum cleaner. Check the circuit board for improperly seated semiconductors and components damaged by overheating.
5-11. SECOND LEVEL MAINTENANCE.
5-12. The second level maintenance consists of procedures required to restore an FW-30 exciter switcher to operation after a fault has occurred. The procedures are divided into troubleshooting, electrical adjustments, and electrical component replacement procedures.

5-13. The FW-30 exciter switcher maintenance philosophy consists of isolating the problem to a specific assembly with subsequent troubleshooting to isolate defective components.

5-14. ELECTRICAL ADJUSTMENTS.
5-15. $\quad+10.5$ V REGULATOR ADJUSTMENT. Potentiometer R74 on the switcher logic circuit board adjusts the +10.5 volt regulator circuit. Adjustment of the regulator circuit is not required unless replacement components are installed in the circuit. The +10.5 volt regulator circuit is adjusted as follows.

5-16. Procedure. To adjust the +10.5 volt regulator circuit, proceed as follows:
A. Disconnect the primary power to the exciter switcher.
B. Remove the top-cover and operate the rear-panel BATTERY ON/OFF switch to OFF.
C. Refer to Figure 5-1 and connect a voltmeter between the anode of diode D37 on the logic circuit board and ground.
D. Apply power to the exciter switcher.
E. Refer to Figure 5-1 and adjust R74 until the voltmeter indicates +10.1 V dc.
F. Disconnect the primary power to the exciter switcher.
G. Remove the test equipment and replace the top-cover.

5-17. BATTERY PROTECT ADJUSTMENT. Potentiometer R69 on the switcher logic circuit board adjusts the threshold of the battery protect circuit. Adjustment of the battery protect circuit is not required unless replacement components are installed in the circuit. The battery protect circuit is adjusted as follows.

5-18. Procedure. To adjust battery protect adjust R69, proceed as follows:
A. Remove the FW-30 top-panel and operate the rear-panel BATTERY ON/OFF switch to OFF.
B. Disconnect the primary power to the exciter switcher.
C. Refer to Figure 5-1 and connect a voltmeter between U23 pin 2 and ground.
D. Apply power to the exciter switcher.

597-0101-6
FIGURE 5-1. FW-30 CONTROL LOGIC CIRCUIT BOARD ADJUSTMENTS

$$
\text { WITH EXCITER ND. } 1 \text { DISABLED, IS A }
$$

MIMENTARY LDW PRESENT AT U9 PIN 4?

1. THE TROUBLESHOCTING INFORMATIIN PRESENTED IS FDR THE FW-30 EX[ITER SWITCHER IN THE AUTDMATIC MODE WITH EXCITER ND. 1 ENABLED.
2. THE MANLAL SWITCHING [IRCDITRY IS DPERATIDNAL
3. ALL CDMDNENTS ARE LICATED aN THE LDGIC CDNTRDL [IRCUIT BDARD UNLESS DTHERWISE SPECIFIED

FIGURE 5-2. TROUBLESHOOTING TREE, NO AUTOMATIC SWITCHING OPERATION

E．Refer to Figure 5－1 and adjust R69 until the voltmeter indicates +2.5 V dc．
F．Disconnect the primary power to the exciter switcher．
G．Remove the test equipment and replace the top－cover．
5－19．POWER FAILURE DETECT ADJUSTMENT．Potentiometer R100 on the switcher logic circuit board adjusts the threshold of the power failure detect circuit．Due to the critical operation of this circuit，field adjustment is not recommended．If components in the circuit have been replaced and adjustment is required，contact the Broadcast Electronics Customer Service Department for a recommended adjustment procedure．
5－20．TROUBLESHOOTING．
5－21．The troubleshooting philosophy for the FW－30 exciter switcher consists of isolating a prob－ lem to a specific circuit．The problem may be further isolated by referencing the following information and Figure 5－2 which presents the FW－30 troubleshooting information．

WARNING DISCONNECT THE POWER SOURCE FROM THE EX－ CITER SWITCHER BEFORE REMOVING OR REPLAC－ WARNING ING ANY COMPONENTS．

CAUTION
CAUTION INADVERTENT CONTACT BETWEEN ADJACENT COM－
PONENTS OR CIRCUIT BOARDS WITH TEST EQUIP－
MENT MAY CAUSE SERIOUS DAMAGE TO THE EX－
CITER SWITCHER．

5－22．After the problem is isolated and power is totally deenergized，refer to the schematic dia－ grams and the theory of operation to assist in problem resolution．The defective compo－ nent may be repaired locally or the entire device may be returned to Broadcast Electronics Inc．for repair or replacement．

5－23．MONITOR OUTPUT CONNECTOR．A monitor output terminal on an FW－30 configured for FX－50 interfacing is provided to facilitate troubleshooting a defective exciter．Refer to Figure 5－3 and connect the appropriate test equipment to the monitor terminal as re－ quired．

CAUTION CAUTION

WHEN REPLACING A COMPONENT MOUNTED ON A

 HEAT－SINK，ENSURE A THIN FILM OF A ZINC－BASED
HEAT－SINK COMPOUND IS USED TO ASSURE GOOD

 HEAT DISSIPATION．5－24．COMPONENT REPLACEMENT．
$5-25$ ．On all circuit boards，the adhesion between the copper trace and the circuit board fails at almost the same temperature as solder melts．A circuit board trace can be destroyed by excessive heat or lateral movement during soldering．Use of a small soldering iron with steady pressure is required for circuit board repairs．

597-0101-17
COPYRIGHT © 1990 BROADCAST ELECTRONICS, INC

FIGURE 5-3. FW-30 MONITOR OUTPUT CONNECTOR

5-26. To remove a soldered component from a circuit board, cut the leads from the body of the defective component while the device is still soldered to the board. Grip a component lead with needle-nose pliers. Touch the soldering iron to the lead at the solder connection on the circuit side of the board. When the solder begins to melt, push the lead through the back side of the board and cut off the clinched end of the lead. Each lead may now be heated independently and pulled out of each hole. The holes may be cleared by careful reheating with a low wattage iron and removing solder with a soldering vacuum tool.

5-27. Install the new component and apply solder from the circuit side of the board. If no damage has been incurred to the plated-through holes, soldering of the component side of the board will not be required.

$44 \begin{aligned} & \text { WARNING } \\ & 4 \downarrow \text { WARNING }\end{aligned}$
 WARNING
 WARNING
 MOST SOLVENTS WHICH REMOVE ROSIN FLUX ARE VOLATILE AND TOXIC BY NATURE AND SHOULD BE USED ONLY IN SMALL AMOUNTS IN A WELL VENTILATED AREA AWAY FROM FLAME, CIGARETTES, AND HOT SOLDERING IRONS.
 OBSERVE THE MANUFACTURES CAUTIONARY INSTRUCTIONS.

5-28. After soldering, remove residual flux with a suitable solvent. Rubbing alcohol is highly diluted and is not effective.
$5-29$. The board should be checked to ensure the flux has been completely removed. Rosin flux is not normally corrosive; however, in time the flux will absorb enough moisture to become conductive and create problems.

5-30. INTEGRATED CIRCUITS. Special care should be exercised with integrated circuits. Each integrated circuit must be installed by matching the integrated circuit notch with the notch on the socket. Do not attempt to remove an integrated circuit from a socket with your fingers. Use an integrated circuit puller to pry the component from the socket.

SECTION VI PARTS LISTS

6-1. INTRODUCTION.

6-2. The following data provides descriptions and part numbers of parts and assemblies required for maintenance of the FW-30 automatic exciter switcher. Each table entry is indexed by reference designators on the applicable schematic diagram.
6-3. Table 6-1 indexes all tables listing assemblies and sub-assemblies having replaceable parts, the table number listing the parts, and the page number of the applicable table.

TABLE 6-1. REPLACEABLE PARTS LIST INDEX

TABLE NO.	DESCRIPTION	PART NO.	PAGE
$6-2$	AUTOMATIC EXCITER SWITCHER	$909-0120-004 /$	$6-2$
$6-3$	AUTOMATIC EXCITER SWITCHER CIRCUIT BOARD	$919-0073$	-304
ASSEMBLY			$6-3$
$6-4$	AUTOMATIC EXCITER SWITCHER CABLE HARNESS	$949-0127$	$6-6$
$6-5$	FW-30 EXCITER SWITCHER, MODIFIED FOR	$959-1251$	$6-7$
	FM-100C/FM-250C SYSTEMS		

TABLE 6-2. AUTOMATIC EXCITER SWITCHER - 909-0120-004/304

TABLE NO.	DESCRIPTION	PART NO.	PAGE
$\begin{aligned} & \text { BT1 THRU } \\ & \text { BT4 } \end{aligned}$	Battery, Rechargeable, X-Cell, 5 Ampere-Hour, 2 Volt	357-6900	4
C1, C2	Capacitor, Electrolytic, $4700 \mathrm{uF}, 35 \mathrm{~V}$	014-4795	2
C3	Capacitor, Mica, $2 \mathrm{pF} \pm 0.5 \mathrm{pF}, 500 \mathrm{~V}$	040-2000	1
C4 THRU C7	Capacitor, Electrolytic, 10 uF, 35V	023-1076	4
D1	Full-Wave Bridge Rectifier, MDA3502, Silicon, 200 V, 35 Amperes	230-3502	1
D2	Diode, 1N4005, Silicon, 600V @ 1 Ampere	203-4005	1
DT1	Transient Voltage Suppressor, 1N6279A, 22V $\pm 0.1 \mathrm{~V}$, Maximum Peak Pulse Current: 49A	206-0001	1
F1, SPARE	Fuse, 3AG, 3.0 Amperes, 250V, Slow-Blow (For 110V Operation)	334-0300	2
F1, SPARE	Fuse, AGC, 1.5 Ampere, 250V, Slow-Blow (For 220V Operation)	334-0150	4
FL1	Fused Power Connector, 120/240V, Voltage Selector, EMI Filter	360-6504	1
J1,J2	Receptacle, BNC	417-0203	2
R1	Resistor, 50 Ohm, 150 Watt, Non-Inductive	131-5027	1
R2	Resistor, 15 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1551	1
S1	Switch, Toggle, Miniature DPDT, 0.4 VA Contacts at 20 V Maximum ac or dc (MUTE)	348-7201	1
S2	Relay, Coaxial RF Transfer Coil: 26.5 V dc, DC Resistive: 125 Ohms $\pm 10 \%$ Contacts: Two Sets SPDT 200W RF @ 50 Ohms	340-0066-001	1
S3 THRU S6	Switch, Push, SPDT, N.O. Momentary Contacts, 0.1A @ 125V ac/dc (MODE and SELECT Switches)	340-0071	4
S7,S8	Switch, Toggle, Miniature DPDT, 0.4 VA Contacts at 20V Maximum ac or dc (CONTROL and BATT)	348-7201	2
T1	Transformer, Power Primary: Dual 115V, One Winding Tapped at 95V, $50 / 60 \mathrm{~Hz}$ Secondary: 25.5V @ 1A, 13.2V @ 3A	376-0218	1
TB1	Barrier Strip, 14 Terminals	412-0014	1
U1,U2	Integrated Circuit, LM317K, Adjustable Positive Voltage Regulator, 1.2 V to 37 V , 1.5 Ampere Maximum, TO-3 Case	227-0318	2
$\begin{aligned} & \text { XS3 THRU } \\ & \text { XS6 } \end{aligned}$	Subminiature Lamp, No. 85, T-1 3/4 Base, 28V @ 0.04 Amperes	321-0085	4
XU1,XU2	Socket, TO-3 Transistor	417-0298	2
----	Switch Cap, Red (S3)	346-1018	1
----	Switch Cap, Green (S4,S5,S6)	340-0016	3
----	Fuse Clip (for spare fuse)	415-1001	2
----	Insulator, TO-3 (for U1, U2)	418-0010	2
----	Nylon Locking Standoff (for circuit board)	441-9311	5
----	Connector, 25-Pin	417-0251	1
----	Pin, Connector	418-0048	25
----	AC Line Cord, N.E.M.A. 3-wire 5-15P North American Plug	682-0001	1
-	Automatic Exciter Switcher Circuit Board Assembly	919-0073	1
----	Automatic Exciter Switcher Cable Harness	949-0127	1

TABLE 6-3. AUTOMATIC EXCITER SWITCHER CIRCUIT BOARD ASSEMBLY - 919-0073 (Sheet 1 of 4)

TABLE NO.	DESCRIPTION	PART NO.	PAGE
C1 THRU C5	Capacitor, Mylar Film, $0.1 \mathrm{uF} \pm 10 \%$, 100V	030-1053	5
C6	Capacitor, Electrolytic, $100 \mathrm{uF}, 25 \mathrm{~V}$	023-1084	1
C7	Capacitor, Ceramic, $0.01 \mathrm{uF} \pm 10 \%, 200 \mathrm{~V}$	030-1043	1
C8	Capacitor, Mylar Film, $0.1 \mathrm{uF} \pm 10 \%$, 100V	030-1053	1
C9	Capacitor, Electrolytic, 10 uF, 35V	023-1076	1
C10	Capacitor, Ceramic, $0.01 \mathrm{uF} \pm 10 \%$, 200V	030-1043	1
$\begin{aligned} & \text { C11 THRU } \\ & \text { C13 } \end{aligned}$	Capacitor, Mylar Film, 0.1 uF $\pm 10 \%$, 100V	030-1053	3
C14,C15	Capacitor, Electrolytic, 10 uF, 35V	023-1076	2
C16	Capacitor, Mylar Film, 0.1 uF $\pm 10 \%$, 100V	030-1053	1
C17	Capacitor, Electrolytic, 10 uF, 35V	023-1076	1
C18	Capacitor, Ceramic, $0.01 \mathrm{uF} \pm 10 \%$, 200V	030-1043	1
C19,C20	Capacitor, Electrolytic, 10 uF, 35V	023-1076	2
$\begin{aligned} & \text { C21 THRU } \\ & \text { C24 } \end{aligned}$	Capacitor, Mylar Film, 0.1 uF $\pm 10 \%$, 100V	030-1053	4
C25	Capacitor, Electrolytic, 10 uF, 35V	023-1076	1
C26	Capacitor, Ceramic, $0.01 \mathrm{uF} \pm 10 \%$, 200V	030-1043	1
$\begin{aligned} & \text { C27 THRU } \\ & \text { C34 } \end{aligned}$	Capacitor, Electrolytic, 10 uF, 35V	023-1076	8
C35	Capacitor, Electrolytic, $4700 \mathrm{uF}, 50 \mathrm{~V}$	014-4793	1
C36	Capacitor, Mylar Film, 0.1 uF $\pm 10 \%$, 100V	030-1053	1
C37	Capacitor, Electrolytic, 33 uF, 35V, Low Leakage	024-3335	1
C38,C39	Capacitor, Electrolytic, 10 uF, 35V	023-1076	2
C40	Capacitor, Electrolytic, $100 \mathrm{uF}, 25 \mathrm{~V}$	023-1084	1
C41,C42	Capacitor, Electrolytic, 1 uF, 50V, Non-Polarized	020-1064	2
C43	Capacitor, Electrolytic, $100 \mathrm{uF}, 25 \mathrm{~V}$	023-1084	1
D1 THRU D28	Diode, 1N4148, Silicon, 75V @ 0.3 Amperes	203-4148	28
$\begin{aligned} & \text { D29 THRU } \\ & \text { D36 } \end{aligned}$	Diode, 1N4005, Silicon, 600V @ 1 Ampere	203-4005	8
D37	Diode, MR751, Silicon, 100V @ 6 Amperes	202-0751	1
$\begin{aligned} & \text { D38 THRU } \\ & \text { D40 } \end{aligned}$	Diode, 1N4005, Silicon, 600V @ 1 Ampere	203-4005	3
$\begin{aligned} & \text { D41 THRU } \\ & \text { D46 } \end{aligned}$	Diode, 1N4148, Silicon, 75V @ 0.3 Amperes	203-4148	6
$\begin{aligned} & \text { D47 THRU } \\ & \text { D53 } \end{aligned}$	Diode, 1N4005, Silicon, 600V @ 1 Ampere	203-4005	7
D54	Diode, Zener, 1N4733A, 5.1V $\pm 5 \%$, 1W	200-4733	1
DS1	Indicator, LED, Red, CM6-86B, 2.2V @ 0.1 Ampere Maximum, T-1 3/4 Size	323-0023	1
DS2	Indicator, LED, Green, 521-9175, 3V @ 40 mA Maximum, T-1 3/4 Size	323-9224	1
DS3	Indicator, LED, Yellow, 521-9176, 3V @ 30 mA Maximum, T-1 3/4 Size	323-9225	1
DS4	Indicator, LED, Red, CM6-86B, 2.2V @ 0.1 Ampere Maximum, T-1 3/4 Size	323-0023	1
DS5,DS6	Indicator, LED, Green, 521-9175, 3V @ 40 mA Maximum, T-1 3/4 Size	323-9224	2
DT1	Transient Voltage Suppressor, 1N6284A, 36V $\pm 1.8 \mathrm{~V}$, Maximum Peak Pulse Current: 30A	206-0002	1
J1,J2	Receptacle, 12-Pin	417-1276	2

TABLE 6-3. AUTOMATIC EXCITER SWITCHER CIRCUIT BOARD ASSEMBLY - 919-0073

(Sheet 2 of 4)

TABLE NO.	DESCRIPTION	PART NO.	PAGE
J3	Receptacle, 6-Pin	417-0677	1
J4,J5,J6	Receptacle, 12-Pin	417-1276	3
J7,J8	Receptacle, Male, 2-Pin In-Line	417-4004	2
J9,J10	Receptacle, Male, 3-Pin In-Line	417-0003	2
K1	Relay, Circuit Board Mount Contacts: SPDT, 100V dc @ 8 Amperes Maximum Coil: 12 V dc, $140 \mathrm{~mA}, 85$ Ohms ± 10 Ohms	272-0106	1
P7 THRU P10	Jumper, 2-Pin	340-4004	4
Q1	Transistor, 2N3904, Silicon, NPN, TO-92 Case	211-3904	1
Q2,Q3	Transistor, MPSA06, Silicon, NPN, TO-92 Case	211-0006	2
Q4	Transistor, 2N3053, Silicon, NPN, TO-39 Case	211-3053	1
Q5	Transistor, 2N4036, Silicon, PNP, TO-39 Case	210-4036	1
R1	Resistor, 499 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-4996	1
R2,R3	Resistor, 1 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1043	2
R4	Potentiometer, $5 \mathrm{k} \mathrm{Ohm} \pm 10 \%, 1 / 2 \mathrm{~W}$	177-5044	1
R5 THRU R7	Resistor, 1 k Ohm $\pm 5 \%$, 1/4W	100-1043	3
R8	Resistor, $499 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-4996	1
R9	Resistor, 1 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1043	1
R10	Potentiometer, $5 \mathrm{k} \mathrm{Ohm} \pm 10 \%$, 1/2W	177-5044	1
R11,R12	Resistor, 1 k Ohm $\pm 5 \%$, 1/4W	100-1043	2
R13 THRU	Resistor, $10 \mathrm{Meg} \mathrm{Ohm} \pm 5 \%$, 1/4W	100-1083	4
R16			
R17	Resistor, $330 \mathrm{Ohm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-3333	1
R18,R19	Resistor, $10 \mathrm{k} \mathrm{Ohm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1053	2
R20	Resistor, $330 \mathrm{Ohm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-3333	1
R21,R22	Resistor, 10 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1053	2
R23	Resistor, 47 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-4753	1
R24	Resistor, 22 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-2253	1
R25	Resistor, 10 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1053	1
R26	Resistor, 22 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-2253	1
R27,R28	Resistor, $100 \mathrm{k} \mathrm{Ohm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1063	2
R29,R30	Resistor, $1.5 \mathrm{k} \mathrm{Ohm} \pm 5 \%$, 1/4W	100-1543	2
R31	Resistor, 22 k Ohm $\pm 5 \%$, 1/4W	100-2253	1
R32	Resistor, $330 \mathrm{Ohm} \pm 5 \%$, 1/4W	100-3333	1
R33,R34	Resistor, 100 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1063	2
R35,R36	Resistor, $1.5 \mathrm{k} \mathrm{Ohm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1543	2
R37,R38	Resistor, 22 k Ohm $\pm 5 \%$, 1/4W	100-2253	2
R39,R40	Resistor, 10 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1053	2
R41	Resistor, $330 \mathrm{Ohm} \pm 5 \%$, 1/4W	100-3333	1
R42	Resistor, 22 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-2253	1
R43	Resistor, $10 \mathrm{Ohm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1023	1
R44	Resistor, 100 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1063	1
R45,R46	Resistor, 1.5 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1543	2
R47 THRU	Resistor, 100 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1063	3
R49			
R50	Resistor, 22 k Ohm $\pm 5 \%$, 1/4W	100-2253	1
R51	Resistor, 10 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1053	1
R52	Resistor, 330 Ohm $\pm 5 \%$, 1/4W	100-3333	1

TABLE 6-3. AUTOMATIC EXCITER SWITCHER CIRCUIT BOARD ASSEMBLY - 919-0073
(Sheet 3 of 4)

TABLE NO.	DESCRIPTION	PART NO.	PAGE
R53,R54	Resistor, 22 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-2253	2
R55	Resistor, 100 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1063	1
R56	Resistor, $1.5 \mathrm{k} \mathrm{Ohm} \pm 5 \%$, 1/4W	100-1543	1
R57	Resistor, 1 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1043	1
R58	Resistor, 1.5 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1543	1
R59	Resistor, 100 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1063	1
R60 THRU	Resistor, 1 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1043	5
R64			
R65	Resistor, $3.9 \mathrm{k} \mathrm{Ohm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-3943	1
R66	Resistor, $2.32 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-2341	1
R67	Resistor, $10 \mathrm{Ohm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1023	1
R68	Resistor, $30 \mathrm{Ohm} \pm 5 \%$, 1W	120-3023	1
R69	Potentiometer, $10 \mathrm{k} \mathrm{Ohm} \pm 10 \%$, $1 / 2 \mathrm{~W}$	177-1054	1
R70	Resistor, $1.33 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-1331	1
R71	Resistor, 20 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-2053	
R72	Resistor, $4.7 \mathrm{k} \mathrm{Ohm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-4743	1
R73	Resistor, $2 \mathrm{k} \mathrm{Ohm} \pm 5 \%$, 1/4W	100-2043	1
R74	Potentiometer, 100 Ohm $\pm 10 \%$, 1/2W	177-1034	,
R75	Resistor, 820 Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-8233	1
R76	Resistor, 121 Ohm $\pm 1 \%$, 1/4W	100-1231	1
R77	Resistor, 365 Ohm $\pm 1 \%$, 1/4W	103-3631	1
R79	Resistor, 121 Ohm $\pm 1 \%$, 1/4W	100-1231	1
R80 THRU	Resistor, 10 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1053	4
R83			
R84	Resistor, 330 Ohm $\pm 5 \%$, 1/4W	100-3333	1
R85 THRU	Resistor, 680 Ohm $+5 \%$, 1/4W	100-6833	3
R87			
R88	Resistor, 1 k Ohm $+5 \%, 1 / 2 \mathrm{~W}$	110-1043	1
R89	Resistor, 10 k Ohm $+5 \%$, 1/2W	110-1053	1
R90	Resistor, 47 Ohm +5\%, 1/2W	110-4723	1
R91	Resistor, 680 Ohm $+5 \%$, 1/4W	100-6833	1
R92,R93	Resistor, 499 k Ohm $+1 \%$, 1/4W	103-4996	2
R94,R95	Resistor, 10 k Ohm $+5 \%, 1 / 4 \mathrm{~W}$	100-1053	2
R96	Resistor, 100 k Ohm +5\%, 1/4W	100-1063	1
R98,R99	Resistor, 10 k Ohm $+5 \%$, 1/4W	100-1053	2
R100	Potentiometer, $10 \mathrm{k} \mathrm{Ohm} \pm 10 \%$, $1 / 2 \mathrm{~W}$	177-1054	1
R101	Resistor, 330 Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-3333	1
R102	Resistor, $510 \mathrm{Ohm}+5 \%$, 1/4W	100-5153	1
U1	Integrated Circuit, LM339AN, Quad Comparator, 14-Pin DIP	221-0339	1
U2	Integrated Circuit, ULN2003A, 7 Section NPN Darlington Driver, CMOS, 16-Pin DIP	229-2003	1
U3,U4	Integrated Circuit, NE555V, Timer, 8-Pin DIP	229-0555	2
U5	Integrated Circuit, CD4027BE, Dual J-K Master-Slave Flip-Flop, CMOS, 16-Pin DIP	225-0003	1
U6,U7	Integrated Circuit, NE555V, Timer, 8-Pin DIP	229-0555	2
U8,U9	Integrated Circuit, MC14011BCP, Quad 2-Input NAND Gate, CMOS, 14-Pin DIP	228-4011	2
U10	Integrated Circuit, CD4069CN, Hex Inverter, CMOS, 14-Pin DIP	228-4069	1

TABLE 6-3. AUTOMATIC EXCITER SWITCHER CIRCUIT BOARD ASSEMBLY - 919-0073 (Sheet 4 of 4)

TABLE NO.	DESCRIPTION	PART NO.	PAGE
U11	Integrated Circuit, MC14584, Hex Schmitt Trigger, CMOS, 14-Pin DIP	228-4584	1
U12,U13	Integrated Circuit, MC14001BCP, Quad 2-Input NOR Gate, CMOS, 14-Pin DIP	228-4001	2
U14	Integrated Circuit, CD4069CN, Hex Inverter, CMOS, 14-Pin DIP	228-4069	1
U15	Integrated Circuit, MC14011BCP, Quad 2-Input NAND Gate, CMOS, 14-Pin DIP	228-4011	1
U16	Integrated Circuit, ULN2003A, 7 Section NPN Darlington Driver, CMOS, 16-Pin DIP	229-2003	1
U17 THRU	Integrated Circuit, 4N33, Optical Isolator, NPN Photo	229-0033	6
U22	Transistor/Infared Emitting Diode, 1500V Isolation, Response: 30 kHz Maximum, Current: 50 mA Maximum, 6-Pin DIP		
U23	Integrated Circuit, TL311P, JFET-Input Differential Comparator, 8-Pin DIP	220-0311	1
U24	Integrated Circuit, LM336Z-2.5, Precision Voltage Reference, $2.5 \mathrm{~V} \pm 4 \%, 0$ to $+705 \mathrm{C}, \mathrm{TO}-92$ Case	229-0336	1
U25	Integrated Circuit, MC7824ACT, Fixed Positive Voltage Regulator, 24V @ 1.5A, TO-220 Case	227-7824A	1
U26 THRU	Integrated Circuit, 4N33, Optical Isolator, NPN Photo	229-0033	4
U29	Transistor/Infared Diode, 1500V Isolation, Response: 30 kHz Maximum, Current: 50 mA Maximum, 6-Pin DIP		
U30	Integrated Circuit, MC14538B, Dual Retriggerable, Resettable Monostable Multivibrator, CMOS, 16-Pin DIP	228-4538	1
XU1	Socket, 14-Pin DIP	417-1404	1
XU2	Socket, 16-Pin DIP	417-1604	1
XU3,XU4	Socket, 8-Pin DIP	417-0804	2
XU5	Socket, 16-Pin DIP	417-1604	1
XU6,XU7	Socket, 8-Pin DIP	417-0804	2
$\begin{aligned} & \text { XU8 THRU } \\ & \text { XU15 } \end{aligned}$	Socket, 14-Pin DIP	417-1404	8
XU16	Socket, 16-Pin DIP	417-1604	1
XU23	Socket, 8-Pin DIP	417-0804	1
XU30	Socket, 16-Pin DIP	417-1604	1
--	Nylon Washer, Flat, (for Q2,Q3) Outside Diameter: 0.312 Inches (0.792 cm) Inside Diameter: 0.141 Inches (0.358 cm)	423-6015	2
----	Transistor Pad, TO-5	409-0005	2
----	Blank Circuit Board	519-0073	1

TABLE 6-4. AUTOMATIC EXCITER SWITCHER CABLE HARNESS - 949-0127

TABLE NO.	DESCRIPTION	PART NO.	PAGE
J1	Receptacle, 25-Pin	$417-0015$	
P1,P2	Plug, 12-Pin	$418-1271$	1
P3	Plug, 6-Pin	$418-0670$	2
P4,P5,P6	Plug, 12-Pin	$418-1271$	1
P7 THRU P10 Plug, Miniature, for RG58/CU Coaxial Cable	$418-0047$	3	
P11 THRU	Plug, BNC	$417-0094$	4
P14			4
---	Pins for P1 thru P6	$417-0053$	52

TABLE 6-5. FW-30 EXCITER SWITCHER, MODIFIED FOR FM-100C/FM-250C SYSTEMS- 959-1251

TABLE NO.	DESCRIPTION	PART NO.	PAGE
$\begin{aligned} & \text { BT1 THRU } \\ & \text { BT4 } \end{aligned}$	Battery, Rechargeable, X-Cell, 5 Ampere-Hour, 2 Volt	357-6900	4
C1, C2	Capacitor, Electrolytic, $4700 \mathrm{uF}, 35 \mathrm{~V}$	014-4795	2
C4 THRU C7	Capacitor, Electrolytic, 10 uF, 35V	023-1076	4
DT1	Transient Voltage Suppressor, 1N6279A, 22V $\pm 0.1 \mathrm{~V}$, Maximum Peak Pulse Current: 49A	206-0001	1
FL1	Fused Power Connector, 120/240V, Voltage Selector, EMI Filter	360-6504	1
S1	Switch, Toggle, Miniature DPDT, 0.4 VA Contacts at 20 V Maximum ac or dc (MUTE)	348-7201	1
S3 THRU S6	Switch, Push, SPDT, N.O. Momentary Contacts, 0.1A @ 125V ac/dc (MODE and SELECT Switches)	340-0071	4
S7, S8	Switch, Toggle, Miniature DPDT, 0.4 VA Contacts at 20 V Maximum ac or dc (CONTROL and BATT)	348-7201	2
T1	Transformer, Power Primary: Dual 115V, One Winding Tapped at $95 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ Secondary: 25.5V @ 1A, 13.2V @ 3A	376-0218	1
TB1	Barrier Strip, 14 Terminals	412-0014	1
U1, U2	Integrated Circuit, LM317K, Adjustable Positive Voltage Regulator, 1.2 V to 37 V , 1.5 Ampere Maximum, TO-3 Case	227-0318	2
----	Socket, TO-3 Transistor	417-0298	2
----	Subminiature Lamp, No. 85, T-1 3/4 Base, 28V @ 0.04 Amperes	321-0085	4
----	Full-Wave Bridge Rectifier, MDA3502, Silicon, 200 V, 35 Amperes	230-3502	1
----	Switch Cap, Red (S3)	346-1018	1
----	Switch Cap, Green (S4,S5,S6)	340-0016	3
----	Fuse Clip (for spare fuse)	415-1001	2
----	Insulator, TO-3 (for U1, U2)	418-0010	2
----	Nylon Locking Standoff (for circuit board)	441-9311	5
-	Connector, 25-Pin	417-0251	1
----	Pin, Connector	418-0048	25
----	Fuse, MDA, 250V, Slow-Blow, Ceramic Element, 4 Amperes	330-0401	2
----	System Controller FM-500 Circuit Board Assembly	919-0073	1
----	Automatic Exciter Switcher Cable Harness	949-0127-001	1
----	Electrical RF Transfer Switch, 28V dc coil @ 0.1 Ampere RF Contacts: Type N Receptacles, 2 X SPDT 1 kW RF @ 50 OhmLoad, Auxiliary Contacts: Wire Terminal, 28 V dc Resistive Load	340-0024	1
----	Test Load, 250 Watt	959-1250	1
----	Fuse, 3AG, 3A, 125V Slow Blow	334-0300	2

SECTION VII DRAWINGS

7-1. INTRODUCTION.

7-2. This section provides schematic diagrams and assembly diagrams as indexed below for the FW-30 automatic exciter switcher.

FIGURE

7-1 AUTOMATIC EXCITER SWITCHER OVERALL SCHEMATIC DIAGRAM
AUTOMATIC EXCITER SWITCHER OVERALL ASSEMBLY DIAGRAM
AUTOMATIC EXCITER SWITCHER CIRCUIT BOARD SCHEMATIC DIAGRAM
AUTOMATIC EXCITER SWITCHER CIRCUIT BOARD ASSEMBLY DIAGRAM
SCHEMATIC DIAGRAM, EXCITER SWITCHER CHASSIS MODIFIED FOR FM-100C/FM-250C
OVERALL SCHEMATIC, FX-50 EXCITER SWITCHER SYSTEM
OVERALL SCHEMATIC, FM-100C/FM-250C
EXCITER SWITCHER SYSTEM

DRAWING NO.

SD909-0120-004

AD909-0120-004

SD919-0073

AD919-0073

SD959-1251

597-0101-9

597-0101-8

	${ }^{\text {max }}$ S 10.4 .88	SEE	=E broadcast electronics inc.
\%			(ix
隹			FASSY, EXCITER SWITCHER
	Tomentis		A D 909-0120-004 E
	mad/		A D ${ }^{\text {a }}$ FW-30 $909-0120-004$ E

COPYRIGHT® 1992 BrOADCAST ELECTRONICS, INC

FIGURE 7-7. OVERALL SCHEMATIC, FM-100C/FM-250C EXCITER SWITCHER SYSTEM
597-0101-8

