THIS EQUIPMENT MUST BE OPERATED WITH A 3-PRONG GROUNDED OUTLET RECEPTACLE. FAILURE TO USE A PROPERLY GROUNDED OUTLET MAY RESULT IN IMPROPER OPERATION OR SAFETY HAZARD!

LIMITED WARRANTY

The Seller warrants that, at the time of shipment, the products manufactured by the Seller are free from defects in material and workmanship. The Seller's obligation under this warranty is limited to replacement or repair of such products which are returned to Marti at its factory, transportation prepaid and properly insured, provided:
a. Notice of the claimed defect is given to Marti within one (1) year [two (2) years for STL systems] from date of original shipment and goods are returned in accordance with Marti instructions.
b. Equipment, accessories, tubes and batteries not manufactured by Marti are subject to only such adjustments as Marti may obtain from the supplier thereof.
c. This warranty does not apply to equipment which has been altered, improperly handled, or damaged in any way.
The Seller is in no event liable for consequential damages, installation cost or other costs of any nature as a result of the use of the products manufactured or supplied by the Seller, whether used in accordance with instructions or not.

This warranty is in lieu of all others, either expressed or implied. No representative is authorized to assume for the Seller any other liability in connection with Seller's products.

MAILING \& SHIPPING ADDRESS:

MARTI Electronics, Inc. P.O. Box $661 \quad 1501$ N. Main St. Cleburne, Texas 76031-0661 The United States of America

COPYRIGHT NOTICE

O1993 All Rights Reserved Mart Electronics, Inc.
2nd printing, August 1993

No part of this manual may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, natural or computer, in any form or by any means, without the prior written permission of Marti Electronics, Inc.

Artwork depicting circuitry in this manual is protected by copyright laws.

Information in this manual is subject to change without notice and does not represent a commitment on the part of Marti Electronics, Inc.

Marti Electronics may make improvements and/or changes in this manual or in the product described herein at any time.

This product could include technical inaccuracies or typographical errors.

PHONE NUMBERS:

Sales \& Service (817) 645-9163 FAX

Introduction 1
Specifications 2
Unpacking and Inspection 4
Installation 5
Electrical Connections 5
STL System (Stereo and Mono) Block Diagram, No. 702-096 7
Antennas 8
Operation 10
System Performance Tests 12
Theory of Operation 14
Tools and Test Equipment Required 16
Receiver Test Report 17
Tune-Up and Adjustment 18
Frequency Selection (Programming Synthesizer, 800-291) 19
Block Diagram, No. 702-100, R-15C 25
Adjustment Locations Diagram, No. 702-099, R-15C 26
Main Frame Schematic, 702-095 28
Parts List, 702-095 29
1st Converter Schematic, 800-211B 30
$890-960 \mathrm{MHz}$. Parts List, $800-211 \mathrm{~B}$ 31
1st Converter Schematic, 800-213 34
$280-480 \mathrm{MHz}$. Parts List, 800-213 35
1st Converter Schematic, 800-212 42
$140-260 \mathrm{MHz}$. Parts List, 800-212 43
Frequency Synthe- \quad Schematic, 800-291 48
sizer Board Parts List, 800-291 49
2nd Converter/ IF Schematic, 800-293 52
Amplifier/ Detector Parts List, 800-293 53
IF Bandpass Filter Schematic, 800-207-250 56
Parts List, 800-207-250 57
Audio Board Schematic, 800-294 58
Parts List, 800-294 59
Meter Board Schematic, 800-295 64
Parts List, 800-295 65
Power Supply/ Schematic, 800-219A 66
Squelch Board Parts List, 800-219A 67
Input/Output Filter Schematic, 800-193A 69
Board Parts List, 800-193A 70

Introduction

The Marti STL-15C Transmitter with companion R-15C Receiver, form a high quality, frequency synthesized, point-to-point, line of sight, radio communications link. These systems are available in frequency bands from 140 MHz to 960 MHz and may be factory configured for operation from various power sources. Depending upon available channel bandwidth, these systems can transmit one of the following:

- Composite FM Siereo cudio wîh two subcarriers*
- Monophonic audio with two subcarriers
- Digir̂al stereo audio (requires external modems)
- Multi-channel audio or data (requires exiernal MUX)
- Digital data (requires external modems)

Complex systems can be built from basic STL-15C transmitters and R-15C receivers having multiple relay (repeaters), bi-directional (full duplex), and automatic switching hot standby features.

Composite system specifications

Stereo separation: 55 dB or better $50 \mathrm{~Hz}-15 \mathrm{KHz}$ with 250 KHz IF Filter 50 dB with 200 KHz IF Filter

Frequency response: Composite channel $\pm 0.2 \mathrm{~dB} 30 \mathrm{~Hz}-53 \mathrm{KHz}$
Wide band channel $\pm 0.3 \mathrm{~dB} 30 \mathrm{~Hz}-100 \mathrm{KHz}$

Distortion: 0.2% or less $30 \mathrm{~Hz}-15 \mathrm{KHz}$ (demodulated, de-emphasized, LP filtered left or right channel)

Noise: more than 72 dB below 100% modulation (demodulated, deemphasized, LP filtered left or right channel)

Emission: 194 KF8E (without subcarrier)
280 KF8E (with 1 subcarrier)
490 KF8E (with 2 subcarriers)

* $940-960 \mathrm{MHz}$ system, 500 KHz channels. Narrower bandwidths at reduced specifications.

Monophonic system specifications

Frequency response: $\pm 0.25 \mathrm{~dB} 30 \mathrm{~Hz}-15 \mathrm{KHz}$
Distortion: 0.2% or less $30 \mathrm{~Hz}-15 \mathrm{KHz}$
Noise: more than 72 dB below 100% modulation ($75 \mu \mathrm{~s}$ de-emphasis)
Emission: 194 KF8E (mono channel with subcarrier)
Pre-emphasis Adjustable $0,25,50$, or 75 microseconds

Model R-15C Aural STL Receiver Specifications

Frequency range:

$140-180 \mathrm{MHz}$	$\mathrm{R}-15 \mathrm{C} / 150$
$200-260 \mathrm{MHz}$	$\mathrm{R}-15 \mathrm{C} / 215$
$280-340 \mathrm{MHz}$	$\mathrm{R}-15 \mathrm{C} / 300$
$400-480 \mathrm{MHz}$	$\mathrm{R}-15 \mathrm{C} / 450$
$890-960 \mathrm{MHz}$	$\mathrm{R}-15 \mathrm{C} / 950$

Sensitivity: Composite stereo demodulated, de-emphasized, LP filtered, or monaural
3 microvolts input for 50 dB signal/noise ratio
9 microvolts input for 60 dB signal/noise ratio
75 microvolts input for ultimate signal/noise ratio (typically 75 dB or better

RF Input Impedance and Connector:

Selectivity: IF filter bandwidth is determined by the subcarrier(s) on the system and interference conditions. Minimum necessary bandwidth is selected from options:

Filter	3 dB	60 dB (bandwidth, KHz)
F200	190	450
F250	220	530
F450	280	900

Spurious Response: $\quad-90 \mathrm{~dB}, 140-480 \mathrm{MHz} ; \quad-70 \mathrm{~dB}, 890-960 \mathrm{MHz}$
Frequency Stability: $\quad \pm .00025 \%,-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Frequency Synthesizer: Frequency selected by 16 DIP switches, maximum resolution 12.5 KHz

Monophonic Audio
Output:

Composite Audio
Output: unbalanced BNC connector; composite frequency response 30 $\mathrm{Hz}-53 \mathrm{KHz} \pm 0.2 \mathrm{~dB}$.

Subcarrier Outputs: Two unbalanced outputs, BNC connectors, selectable high pass filtering for monophonic or composite stereo modes. Subcarrier output levels are 2-3 v. P-P for 10% subcarrier insertion at the STL-15C transmitter. Subcarrier high pass filter cut-off frequency is 25 KHz in "mono mode" and 80 KHz in "composite mode."

Digital Output: The J2 "Composite Output" BNC connector can be converted to a "Digital" output by connecting an alternate shielded wire by changing two pins in a cable connector. The "Digital" output is unfiltered, unprocessed baseband having a 3 v . P-P level and a response of $30 \mathrm{~Hz}-200 \mathrm{KHz}$.

Front Panel Controls: 10 dB Attenuator, Composite Level Adjust, Mono Level Adjust, Squelch Adjust, and Meter Switch.

Metering and Test meter reads Signal Level, Program Level (mono or Indicators: composite), Subcarrier Level, AFC Level, Local Oscillator Level, and Mixer Level. LED's indicate AFC Lock, Composite Mode, Mono Mode, and Squelch Open.

Automatic Changeover: Provision for automatic changeover by addition of ARS-2 Automatic Receiver Switcher.

Accessory connector: 15 pin D connector on rear panel provides filtered access to +13.5 v regulated bus, $\mathbf{+ 1 8} \mathrm{v}$ unregulated supply, Squelch relay contacts.

Power Requirements: $\quad 120 / 220 / 240 \mathrm{VAC}^{*}, 50 / 60 \mathrm{~Hz}, 20$ watts or $11-14 \mathrm{VDC}$ negative ground or $22-28 \mathrm{VDC}^{* *}$ negative ground at 600 ma . (900 ma . initial warmup.

AC Fuse Rating: For 120 v . use $\mathbf{0 . 5}$ Amp fuse
For 220 v . use $\mathbf{0 . 2 5}$ Amp fuse
Dimensions: $\quad 3.5$ inches High $\times 19$ inches Wide $\times 13$ inches Deep
8.89 cm High x 48.26 cm Wide x 33.02 cm Deep

Weight: Net 9 pounds. Domestic packed 13 pounds.
Net 4.1 kilograms. Export packed 5.9 kilograms.

* Voltage must be specified with order.
** Requires APS-28/18 Power Supply.
Specifications subject to change without notice

This equipment was factory tested, inspected, packed, and delivered to the carrier with utmost care. Do not accept shipment from carrier which shows damage or shortage until the carrier's agent endorses a statement of the irregularity on the face of the carrier's receipt. Without documentary evidence, a claim cannot be filed.
Unpack equipment immediately upon receipt and thoroughly inspect for concealed damage. If damage is discovered, stop further unpacking and request immediate inspection by local agent of carrier. A written report of the agent's findings, with his signature is necessary to support claim. Check your shipment against the shipping papers for possible shortage. Do not discard any packing material until all items are accounted for. Small items are often thrown away with packing material. Packing material should be retained until equipment testing is completed. Any equipment returned to the factory should be packed in original cartons, insured, and pre-paid.

Installation

Install rack-mounted equipment in a well-ventilated, well-grounded, and shielded rack cabinet. Do not locate solid-state equipment in a rack above tube-type equipment which produces high temperatures.

Problems can also be avoided by locating this unit away from other equipment which has transformers that produce strong magnetic fields. These fields can induce hum and noise into the Marti equipment thus reducing performance. Strong radiofrequency (RF) fields should be avoided where possible. Extensive shielding and filtering have been incorporated into this equipment to permit operation in moderate RF environments. All equipment racks, cabinets, etc., should be bonded together by wide copper grounding strap to ensure that all system elements are at RF ground potential.

Receiver connections for Composite Stereo operation

(Refer to Drawing 702-096)

1. The composite signal output of the $\mathrm{R}-15 \mathrm{C}$ Receiver is the BNC jack labeled "J2 COMPOSITE". The composite output is connected to the composite signal input of the FM transmitter exciter by a short length of RAG-58 coaxial cable.
2. A subcarrier demodulator or remote control (operating above 92 KHz) can be connected to " J 1 SUBCARRIER NO. 1" and/or "J3 SUBCARRIER NO. 2" output BNC jack. The ability of the STL-15C system to transmit subcarriers depends upon the channel bandwidth available. The $\mathrm{R}-15 \mathrm{C}$ receiver IF filter selectivity must be compatible with the available interference free channel bandwidth. Using 50 KHz deviation for 100% modulation, the approximate bandwidth required for various sub carriers follows:

Subcarrier Frequency	Receiver IF Bandwidth (3dB)
67 KHz	234 KHz
92 KHz	284 KHz
110 KHz	320 KHz
180 KHz	460 KHz

Actual bandwidth may require an additional 10% to 15% to allow for the modulation on the subcarrier itself. With the severe STL channel crowding with resulting interference prevalent around large markets, subcarriers above 110 KHz are not recommended.
3. The accessory connector has several uses such as remote control, automatic switching, and external DC power. Connection instructions are furnished with these accessories.
4. Connect STL receiving antenna coax to "J6 ANTENNA". This requires a type N male connector. A short flexible jumper (20 " max.) may be used between J6 and semi-flexible coax. Marti Part No. 585-017 double shielded, low-loss RG 214/U jumper is recommended.
5. Connect AC line receptacle on back of the receiver to a 115 volt AC power source with special cord set supplied. USE ONLY 3-PRONG GROUNDED OUTLET RECEPTACLES FOR SAFETY.

WARNING

This equipment must be operated with a 3 -prong, grounded, 115 volt, AC outlet receptacle! Failure to use a properly grounded outlet could result in a safety hazard or faulty equipment performance!
(See next page for receiver connections for monophonic operation.)

R-15C Receiver connections for Monophonic operation

(Refer to Drawing 702-096)

1. Monophonic program audio output is available at "600 ohm balanced" audio output screw terminals, TB-1. Use shielded wire. Program audio output level is +10 dBm max, 600 ohms balanced, and isolated from ground. For dual channel stereo, repeat instructions at second receiver. Audio processing requirements will be discussed in the "OPERATION" section of this manual.
2. Connect a remote control or subcarrier demodulator to the jack marked, "J1". The subcarrier load may be 600 to 5 K ohms impedance, and the output level is approximately one (1) volt RMS. Systems factory supplied with 250 KHz IF bandwidth will carry subcarriers up to 92 KHz . For other subcarrier frequencies or narrow IF bandwidth systems contact the factory. A second subcarrier system can be connected to " J 3 ". If a dual channel stereo STL is used, connect one subcarrier generator to "J1" or "J3" on each channel's transmitter and receiver.
3. The accessory connector has several uses such as automatic switching, and external DC power. Connection instructions are furnished with these accessories.
4. Connect STL receiving antenna coax to, J6 ANTENNA. This requires a type N male connector. A short flexible jumper ($20^{\prime \prime}$ max.) may be used between J6 and semi-flexible coax. Marti Part No. 585-017 double shielded, low-loss RG-214/U jumper is recommended.
5. For dual channel stereo, use Model MTS-1 Receiver Combiner between J 6 of each receiver. Use a Part No. $585-017$ jumper between the ANTENNA connector of the MTS-1 and the semirigid coax. Refer to Drawing 702-096.
6. Connect AC line receptacle on back of the receiver to a 115 volt AC power source with special cord set supplied. USE ONLY 3-PRONG GROUNDED OUTLET RECEPTACLES FOR SAFETY.

WARNING

This equipment must be operated with a 3-prong, grounded, 115 volt, AC outlet receptacle! Failure to use a properly grounded outlet could result in a safety hazard or faulty equipment performance!

COMPOSITE STEREO

dUAL CHANNEL STEREO
for oetailed instructions read equipment instruction manuals
for mono operation omit left transmitter, receiver, hrc-10 and mis-

MARTI ELECTRONICS cleburne, ix 76033-0061	DRAWING NO. $\underset{7 / 28 / 93}{\substack{\text { COPYRIGHT }}} \quad 702-096$	TITLE COMPOSITE \& DUAL CHANNEL STEREO STL SYSTEM BLOCK DIAGRAM

The following suggestions are offered to help those responsible for antenna installations avoid costly errors in assembly and adjustment. Marti Electronics, Inc. assumes no responsibility for the installation and performance of antenna systems associated with its equipment. The following suggestions are not intended to be a complete step-by-step procedure, simply a listing of some of the most frequently reported errors in antenna system installation.

Antenna Assembly

Follow the manufacturer's instructions carefully. If no instructions were included with the antenna, call or write the antenna manufacturer for instructions. Errors are frequently made in assembly of the RF feed dipole in multi-element grid parabola antennas. The feed dipole elements must be installed in the same plane as the reflector grids. In other words, if the reflector grid elements are horizontal. the feed dipole elements must also be horizontal. Cross polarization of grid and feed dipole will resuit in total loss of antenna gain!

Transmission Line Connector Assembly

Do not use RG-58 U or RG-8 U cable with antennas! They have too much loss at VHF and UHF frequencies. Use low-loss foam dielectric solid copper outer shielded and jacketed coaxial cable of $1 / 2^{\prime \prime}$ to $1-5 / 8^{\prime \prime}$ diameter. Follow the instructions furnished by the manufacturer when cutting coaxial cable. Inspect the cable ends for small metal fragments which can short-circuit the line inside the connector assembly. Check the line for a shor-circuit condition after each connector is installed by using an ohmmeter.

Moisture Proofing Coax Connectors

Extreme care must be exercised with coaxial cable before and after connectors have been installed to ensure that moisture does not enter the line. Foam dielectric line can take on moisture absorption which is difficult to detect and remedy. Therefore. keep the line dry while in storage with ends tightly capped. Coaxial splices, connectors. and fittings, to be located outside should be made mechanically tight. then
coated with a weather-proofing material over at least two layers of vinyl plastic electrical tape. Moisture problems in antenna systems are usually traced back to connectors which have NOT been properly taped. The Marti K-1 Grounding and Weatherproofing Kit is recommended for use in each new antenna installation.

Location and Grounding of Coaxial Cable

Keep the STL receiver coaxial cable as far from the broadcast transmitter and its coaxial cable as possible. DO NOT STRAP RECEIVER CABLE TO THE MAIN ANTENNA CABLE AT ANY POINT. PLACE THE RECEIVER ANTENNA COAXIAL CABLE ON THE OPPOSITE SIDE OF THE TOWER FROM THE MAIN ANTENNA CABLE. Maintain maximum separation between these cables at all points, including the distance from tower base to transmitter building as well as inside the building.

System Grounding

It essential that the STL antenna system be properly grounded for safety and proper operation.

Antenna Installation and Adjustment

The polarization of the transmit and receive antennas of the STL system must be the same! This means that if the transmitting antenna is vertical, the receiving antenna must also be vertical. Each antenna should be attached to the tower using the proper side mount or top mount hardware. Each antenna should be attached to the tower to allow for final adjustment in azimuth heading and vertical tilt. After visual adjustment of the antennas, the transmitter and receiver can be used to make the final adjustments of the antennas. With the transmitter driving one antenna, the receiving antenna is adjusted for maximum signal (indicated on the receiver) in both horizontal and vertical directivity. CAUTION: Antennas have a "major" and several "minor" lobes in their directivity patterns. A common error is to peak the antenna on a minor lobe, resulting in a signal level of only a fraction of the major lobe signal. This error can be avoided only by swinging the antenna through a large angle so that all lobes are evaluated and the major lobe clearly determined. After one antenna is adjusted, the transmitter and receiver locations are reversed, to allow adjustment of the other antenna. If an RF watt meter is available, each antenna and transmission line can be checked for

VSWR when the transmitter is supplying power to it. The VSWR should be less than 1.5 to 1 (1.5:1).

IF THE ANTENNA SYSTEM FAILS TO GIVE THE PREDICTED SIGNAL STRENGTH LEVEL, THE FOLLOWING ITEMS SHOULD BE CHECKED:

1. Check for correct assembly of antenna. Grid reflector antennas must have the drive dipole parallel with reflector grid bars.
2. Check that antennas have same polarity.
3. Check orientation of antennas in both horizontal and vertical directions.
4. Check VSWR of both transmit and receive antennas. VSWR should be less than 1.5:1.
5. Check Fresnel zone clearance along radio path.
6. Check for obstructions in the path such as trees and man-made structures. The base antenna must be high enough to provide a line-of-sight path to the remote transmitting antenna.

Operation

Control Functions and Panel Indicator Lamps

COMPOSITE LEVEL

When selected by internal jumper plugs, the "COMPOSITE LEVEL" lamp will be illuminated. Composite output is adjustable over a range of 1.8 to 3.5 volts P-P.

MONO LEVEL

When selected by internal jumper plugs, the "MONO LEVEL" lamp will be illuminated. Balanced 600 ohm mono level is adjustable over a range of -40 to +10 dBm .

SQUELCH ADJUST

The SQUELCH ADJUST pot is used to set the minimum level of received signal required to "open" the audio squelch of the receiver. This level is factory set to 4 microvolts, but may be changed if necessary. The squelch should be set to open when receiving the signal from the STL-15C transmitter, and close and remain closed at all times when the transmitter is "OFF". Very sensitive (low level) settings should be avoided to prevent the squelch from opening on noise or other signals.

ATTENUATOR

The RF input sensitivity of the $\mathrm{R}-15 \mathrm{C}$ receiver can be attenuated by placing the "ATTENUATOR" switch in " 10 dB ATTEN." position. This may be desirable when the received signal is very strong in order to bring the "SIG. LEVEL" meter indication on scale and to make the squelch relay less susceptible to noise and interfering signals. On long transmission paths and fading signal conditions. "MAX SENSITIVITY" setting is required.

AFC LOCK LIGHT

The AFC LOCK light should be illuminated at all times the receiver is operating. This indicates the VCO of the frequency synthesizer is locked to the reference oscillator. The receiver squelch relay will not open unless the AFC LOCK light is on.

Test Meter

An illuminated TEST METER and selector switch are built into the $\mathrm{R}-15 \mathrm{C}$ receiver to permit monitoring of critical parameters. These are:

1. "SIGNAL LEVEL" - The received signal strength indication (RSSI) is displayed in relative values on the "VU" scale of the meter when switched to "SIG. LEVEL". Typical RSSI values and conditions are shown in the following table:

Sig. Level Meter Reading	Attenuator Switch Setting	Signal Strength (microvolts)
-7 VU	max sensitivity	5
-3.5 VU	max sensitivity	10
-1 VU	max sensitivity	50
0 VU	max sensitivity	100
+1.5 VU	max sensitivity	250
0 VU	10 dB ATTEN	500

See Receiver Test Report on page 17
2. "PGM LEVEL" - The recovered audio level (mono or composite) is displayed on the upper "VU" scale of the meter. This indication may be useful in initial set-up under test tone conditions. "Composite" or "mono" levels may be observed while adjustments are being made. The program level meter is not a peak reading meter and is useful for test tone measurements. Complex program audio will be indicated at about 6 dB below actual peak values. The modulation of the STL link is set at the "PEAK MODULATION" bar graph meter of the STL-15C transmitter. "Composite" or "mono" levels out of the R-15C receiver are set for correct modulation of the broadcast transmitter as indicated on the station's modulation monitor.
3. "SUB LEVEL" - Received subcarrier level is indicated in this switch position. If 10% subcarrier injection is used at the STL-15C transmitter, a "SUB LEVEL" indication of approximately "0" VU is indicated.
4. "AFC LEVEL" - Indicates the AFC error correction voltage in the phase-locked loop. This reading should be " $\mathbf{0} \mathbf{V U} " \pm 1.5 \mathrm{VU}$. Level errors greater than $\pm 1.5 \mathrm{VU}$ call for adjustment of VCO center frequency. See section:

Tune Up and Adjustments

" 5. "L. O. LEVEL" - The local oscillator (L.O.) level meter reading is normally -5 VU to -3 VU .
6. "MIXER" - The mixer meter reading is normally -3 VU to +3 VU .

> It is prudent to record all meter readings at the time the equipment is initially installed to aid in future trouble shooting.

INTERNALLY SELECTED OPTIONS

The R-15C receiver has several options selected by jumper plugs. Refer to section titled:

Tune Up and Adjustments

FREQUENCY PROGRAMMING

The $\mathrm{R}-15 \mathrm{C}$ receiver frequency synthesizer is programmed by 16 switches located on the R-15C Frequency Synthesizer Board, 800-291. Refer to section titled:

System Performance Tests

The STL-15C transmitter, R-15 receiver with the associated antenna system can be tested and compared with factory test data included in this manual. The following procedures should be followed in order to obtain reliable and accurate results.

Before audio tests or subcarrier tests are begun check the receiver "SIG. LEVEL" METER for required minimum signal. A conversion from VU to microvolts is given under OPERATION in the R-15 receiver manual. For a 950 MHz . system using 50 KHz FM deviation, typical noise levels are:
$1 \mu v$ for $20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio
$3 \mu v$ for 50 dB S/N ratio
$10 \mu \mathrm{v}$ for $60 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio
$20 \mu \mathrm{v}$ for 70 dB S/N ratio
$50+\mu v$ for ULTIMATE
(Demodulated left or right channel de-emphasized and low-pass filtered.)

For the above system with 20% subcarrier injection, the following noise level on the subcarrier (Marti SCG-10 - SCD-10 System) was measured: (no modulation main or sub)
$10 \mu \mathrm{v}$ for 40 dB Subcarrier S / N ratio
$20 \mu \mathrm{v}$ for 47 dB Subcarrier S / N ratio
$30 \mu \mathrm{v}$ for 50 dB Subcarrier S / N ratio
$150 \mu \mathrm{v}$ for ULTIMATE
With ultimate S / N ratio, main to sub crosstalk should be -40 to -45 dB (using Marti SCG-10 - SCD-10 Subcarrier System).

NOISE

(monophonic mode)

Noise measurements should be made first. since high noise levels will influence distortion readings. Also ground loops in the audio oscillator to transmitter
connections and distortion analyzer to receiver connections must be resolved before testing begins. The influence of high RF fields upon the test equipment must be determined and corrected before accurate measurements can be made. NOTE: NOISE AND DISTORTION MEASUREMENTS ARE MADE WITH SUBCARRIER AND REMOTE CONTROL INPUT SIGNALS REMOVED. System signal to noise ratio is determined while modulating the transmitter 100% at 400 Hz . A level of +8 dBm across the balanced audio input terminals of TB-1 will produce a reading of 100% modulation on the "PEAK MODULATION" indicator. Set Receiver "MONO LEVEL" pot for +10 dBm output into the distortion analyzer. If the distortion analyzer has a high impedance input, add a 600 ohm load resistor to match the receiver. Establish +10 dBm on the audio voltmeter of the analyzer as the reference level for 100% modulation. Next, remove the audio signal from the transmitter input and measure noise level below reference (100% modulation). This reading should compare with that published under SYSTEM SPECIFICATIONS in this manual.

DISTORTION (monophonic mode)

Harmonic distortion is usually measured at 100% modulation and at several frequencies. If pre-emphasis processing is used in the transmitter with corresponding de-emphasis in the receiver, it is normal for available audio level at the receiver to drop with increasing frequency according to the de-emphasis curve selected. At 15 KHz , there is sufficient level to operate most modern distortion analyzers. Distortion levels should be within specifications. If distortion is out of specs, check system noise, check for test equipment ground loops, RFI, and transmitter/receiver operating frequency. If either unit is off frequency, the FM modulation sidebands are not centered within the IF filter bandpass, which can cause audio distortion.

FREQUENCY RESPONSE (monophonic mode)

If the STL-15C System is switched to flat processing, frequency response can be measured as if the signal were being sent over straight wires. If pre-emphasis processing is used (especially $75 \mu \mathrm{~s}$) allowance must
be made in the transmitter audio input level to prevent over-modulation at test frequencies above 400 Hz . The simplest and fastest method is to set the transmitter audio input level for 100% modulation at 400 Hz ., then attenuate this level 20 dB . Set receiver output level to -10 dBm as the reference, then sweep the audio band for response. Response should be within SYSTEM SPECIFICATIONS.

COMPOSITE (STEREO) SEPARATION, NOISE, DISTORTION AND FREQUENCY RESPONSE. (composite mode)

This procedure consists of feeding a stereo encoder (generator) capable of more than 60 dB separation ($50 \mathrm{~Hz}-15 \mathrm{KHz}$) into the composite input of the STL-15C transmitter and connecting a stereo decoder (monitor) to the composite output of the R-15C receiver. The actual test procedure may vary with different decoders (monitors). Therefore the procedure prescribed in the decoder (monitor) instruction manual should be followed.

Theory of Operation

The Marti R-15C is a synthesized doubleconversion superheterodyne receiver. When used with the companion STL-15C transmitter a high quality point-to-point radio link can be assembled for transmission of composite stereo audio, monophonic adio, digital data (by means of modems) or other communications.

Since the general theory of operation of superheterodyne receivers is well known, we will briefly describe the function of each board (subsystem) of the R-15C receiver. Refer to block diagram 702-100 for signal flow, and to the individual schematic diagrams for circuit details.

1st CONVERTER, 800-211, 800-212, 800-213

The received RF signal is applied to the 1st converter module. After passing through a threesection preselector, the signal is coupled to Gate No. 1 of a GaAs dual-gate RF amplifier. The output of this amplifier is impedance matched to DoubleBalanced Mixer X-1. The output of the Local Oscillator frequency multipliers is also impedance matched to the local oscillator port of mixer X-1. The third port of the double-balanced mixer $\mathrm{X}-1$ is the converter output. The 1st converter output is in the 70 - 78 MHz range.

SECOND CONVERTER / IF AMP / DETECTOR, 800-293

The 50 ohm output from the 1st converter is connected to J 3 of this board by a short coaxial cable. J-FET Q4 raises the impedance for the two-section band pass filter which is tuned to the $70-78 \mathrm{MHz}$ output of the first converter. This signal is amplified by dual-gate FET Q5, again filtered by L7/C48 then fed to the gate of Q6. J-FET Q6 is a source follower driving the 50 ohm RF input of double balanced mixer X1. The L.O. drive from Synthesizer Board,

800-291, is connected to the L.O. port of mixer XI via connector $J 5$. The 10.7 MHz frequency difference between the RF and L.O. signals appear at the IF port of mixer X 1 which is connected to J 4 . The 10.7 MHz signal is routed through IF Bandpass Filter Board, 800-207, and back to J1 of Second Converter/IF Amp/ Detector Board, 800-293, for amplification by Q1 and Q2 with filtering by CF1 and CF2. IC5 combines the functions of IF amplifier/limiter, quadrature detector, and receive signal strength indicator (signal level metering). The wide band output of Q5 appears at Pin 6, and is connected to ICI - IC4 for pre-processing of the composite, mono. and subcarrier signals, and for level metering.

AUDIO BOARD, 800-294

Audio Board, 800-294 processes composite and mono audio for the $\mathrm{R}-15 \mathrm{C}$ and is programmable (by jumper plugs) for composite stereo or monaural signal processing.

Using "jumper plugs" the user may select "HISUB" for subcarrier operation in composite mode or "LO-SUB" for subcarrier operation in mono mode. When changing mode of operation jumper plugs are also provided to switch the front panel LED mode indicators and level metering. See the NOTE on Schematic, $\mathbf{8 0 0 - 2 9 4}$ to set jumpers properly!

COMPOSITE PROCESSING:

Composite processing entails low pass filtering, delay equalization, and high pass filtering (for subcarriers). Low pass filtering achieves a flat amplitude response to 53 KHz with a "brick-wall" cut-off using elliptic filters. Group delay, introduced by the low pass filter, is equalized using active allpass filters and achieves a flat group delay across a frequency band of 50 Hz to 53 KHz . High pass filtering, using elliptic filters, has a "brick-wall" cutoff at 80 KHz . with a flat response beyond 80 KHz . The output, as indicated on schematic $800-294$, is labeled "HI-SUB".

MONO PROCESSING:

Mono processing entails de-emphasis, low pass filtering, amplification, and high pass filtering (for subcarriers). User options provide for selection of 75 $\mu \mathrm{s}, 50 \mu \mathrm{~s} .25 \mu \mathrm{~s}$, or $0 \mu \mathrm{~s}$ de-emphasis. Active Butterworth low pass filtering achieves a flat amplitude response to 15 KHz rolling off sharply above 15 KHz . Active Butterworth high pass filtering provides a sharp roll-off at 25 KHz with flat amplitude response above 25 KHz for subcarriers.

Output of the high pass filters is labeled "LO-SUB" on Schematic, 800-294. See instructions on this schematic for selection of "mode", de-emphasis, and subcarrier

FREQUENCY SYNTHESIZER, 800-291

The $\mathrm{R}-15 \mathrm{C}$ receiver frequency is synthesized at the second conversion local oscillator frequency, which is 10.7 MHz below (or above) the first converter output frequency. Using the $944-952 \mathrm{MHz}$ band as an example, the first converter output would be $70-78 \mathrm{MHz}$. To convert to the second IF frequency of 10.7 MHz , the synthesizer must generate the required frequency in the range of 59.30 to 67.30 MHz ($\mathrm{F}-10.7$) or 80.70 to $88.70 \mathrm{MHz}(\mathrm{F}+10.7)$. Programming instructions for the synthesizer are on page 19.

The frequency synthesizer consists of a PhaseLocked Loop (IC5), a Voltage-Controlled Oscillator (Q2), a Pre-scaler (IC4), a Reference Frequency (Y1), and a Loop Filter (IC2A). The PLL is a programmable device with the reference frequency generated by a crystal oscillator. The loop filter is an active type and the pre-scaler is used to pre-scale the VCO frequency to make it compatible to the PLL. The PLL performs three major functions:

1. compares the phase of the pre-scaled VCO frequency (further processed inside the device) with the frequency of resolution and produces outputs that are used by the loop filter to produce a DC voltage to control the VCO frequency.
2. controls the pre-scaler by selecting its divisor.
3. generates the frequency of resolution, internally, using the crystal oscillator.

The PLL has 16 programming pins that are used to select a VCO frequency and produce a lock. The program to select a particular VCO frequency is
selected by 16 dip switches. An extremely stable crystal oscillator and noiseless loop filter make the synthesizer ultra stable. The output of the phaselocked VCO (Q2) is buffered by IC3, low pass filtered and connected to J1 (L.O. out). A short coaxial cable connects with J5 (L.O. in) of Board, 800-293.

INPUT OUTPUT FILTERS, 800-193A

All input/output circuits connected to ACCESSORY connector J4, as well as the AC line input, have radio-frequency filters.

POWER SUPPLY/ SQUELCH, 800-219A

The power supply consists of a bridge rectifier, D1, D2, D3, D4 filter C5 and regulator IC-3. R8 and R9 set the output voltage and D5 and D6 protect IC-3 from reverse voltage. Zener diode D7 provides a shunt regulated reference voltage for the comparators, IC-2, for instances when the receiver is operated from external unregulated DC supplies.

The signal squelch IC-2B comparator has the signal level metering voltage applied to the appropriate input. Signal squelch comparator IC-2B output is connected to relay driver Q 2 . The collector of Q2 also operates the "SQUELCH OPEN" LED on the receiver panel. Squelch adjustment is provided by potentiometer R1 located on METER/CONTROL BOARD, 800-295 which divides the comparator reference voltage through R11 and R12.

The signal level voltage is inhibited (shorted to ground) when the frequency synthesizer AFC LOCK light is NOT "ON", thus muting all receiver signal outputs.

Signal level voltage is also connected to meter driver amplifier IC-1. The "SIGNAL LEVEL" position of the test meter is calibrated by R2.

Test Equipment

Distortion Analyzer
Oscillator
Attenuator Set
Frequency Counter
Digital Multimeter
Analog Multimeter
RF Attenuator
RF Signal Generator
Stereo Monitor
Stereo Generator
Oscilloscope

Krohn-Hite Model 6801
Krohn-Hite Model 4500
Hewlett-Packard Model 3500
Hewlett-Packard Model 5383A
(option 001)
Beckman Model 3030
Triplett Model 630
Kay Model 437A (adjustable 0-110 dB)
Marconi Model 2022C
Belar Model FMS-2
Aphex Model AX400
Tektronix Model 2215

Tools for Alignment

Type of Tool	Manufacturer's No.	Marti Part No.
Tuning Tool	GC 9300	$930-037$
Tuning Tool	GC 9440	$930-069$
Tuning Tool	Spectrol 8T000	$930-100$
Tuning Tool	Sprague-Goodman	$930-062$
Tuning Tool	Johanson 8762	$930-096$ (yellow)
Tuning Tool	Johanson 8766	$930-076$ (blue)

The STL-15C/R-15C Alignment Tool Kit (Marti Part No. 704-175) containing all the above tools may be obtained from the factory for $\$ 19.83$.

R-15C Receiver Test Report

Composite system measurements are made using an Aphex Model AX 400 Stereo Generator feeding the STL-15C transmitter, and a Belar Model FMS-2 Stereo Monitor as a stereo demodulator *for the composite output of the $\mathrm{R}-15 \mathrm{C}$ receiver.

Date: \qquad
Signature:

R-15C Tune-Up and Adjustments

Refer to Location of Adjustments Drawing No. 702-099 and appropriate schematic diagrams for each module.
This equipment was thoroughly tested and inspected at the factory prior to shipment. The actual equipment performance was recorded on the factory test report (R-15C RECEIVER TEST REPORT) found on page 17. Adjustments should rarely be necessary in the field and should be attempted only by highly trained technicians familiar with this type equipment.. Laboratory grade test equipment is required and is listed under "TEST EQUIPMENT FOR STL-15C TRANSMITTERS and R-15C RECEIVERS" (page 16). For location of adjustments and test points in the R-15C receiver refer to Adjustment Location Diagram, 702-099, on page 26.

1st CONVERTER, 800-211,

212, \& 213

1. Set the local oscillator on exact frequency by adjusting L1 while observing the frequency on a 225 MHz counter plugged into JI. See TABLE 1. below in order to determine the correct frequency at JI.

NOTE: Unplug the counter from J1 before doing Step 2.

FOR 800-211 CONVERTER ONLY

2. Tune L2 and L4 for maximum negative voltage at TP1. Use the 3 volt DC scale of a sensitive multimeter. Do NOT tune C7, C8, C13, C14 - they are factory adjustments only!
3. Tune L5 and L6 for maximum voltage at TP-2.
4. Tune C18 for maximum voltage at TP-3.
5. Reduce received signal level at J 6 for a $1 / 3$ scale reading on SIG. LEVEL METER. Tune C23. C29, C33, C34, and C35 for maximum signal level.

FOR 800-212 and 800-213 CONVERTERS ONLY

2. Switch METER to "L.O. LEVEL". Tune L5 and L6 for maximum reading. DO NOT TUNE TRIMMER CAPACITORS-THEY ARE FACTORY ADJUSTMENTS ONLY!!! (TP-1)
3. Switch METER to "MIXER" and tune L7 and L8 for maximum reading. (TP-2)
4. Switch METER to "SIG. LEVEL", reduce signal level at J6 for a $1 / 3$ scale reading on SIG. LEVEL METER. Tune the three gold capacitors on top of the pre-selector for maximum signal level. On 800-213 board tune C27 and C32 for maximum signal level. On 800-212 board tune L9 for maximum signal level.

I.F. FILTER, 800-207-250

There are no user adjustments on this board.

AUDIO PROCESSING BOARD, 800-293

This module has been thoroughly tested and adjusted at the factory. Only movement of jumper plugs to change between "COMPOSITE MODE", and "MONO MODE", and de-emphasis options should be necessary in the field.

Refer to Drawings 702-099 (page 26) for JP (jumper plug) locations and 800-294 (page 58) for NOTES on JP programming.

Monophonic mode:

To select monophonic (single program audio channel) mode. place jumper plugs at positions 2, 4, 5, and 7. The "MONO LEVEL" pot on the front panel is now used to set the mono output level at TB-1.

De-Emphasis: In mono mode the user can select deemphasis of $0,25,50$ or 75 microseconds. The U.S. standard is 75 microseconds, the European is 50 microseconds, and some users prefer zero or 25 microseconds for various reasons. The emphasis selection must be the same for the transmitter and receiver.

De-Emphasis (microseconds)	Jumper Plug(s)
0	remove $9 \& 10$
25	9 only
50	10 only
75	$9 \& 10$

Factory Calibration of De-Emphasis (mono mode)

1. Set pre-emphasis jumper plugs on STL-15C transmitter Processor Board, 800-285 to 75 micro-seconds as shown on Drawing 800-285 of the STL-15C instruction book.
2. Select 75 microseconds on R-15C Board 800-294 by inserting jumper plugs 9 and 10 .
3. Modulate transmitter 100% at exactly 15 KHz . Set receiver PGM LEVEL ADJUST for exactly - 7 dBm on an accurate audio voltmeter at terminals TB-1.
4. Lower the audio signal generator frequency to exactly 400 KHz at the exact same level into the STL-15C.
5. The $\mathrm{R}-15 \mathrm{C}$ receiver audio output level meter should read $+10 \mathrm{dBm} \pm 0.25 \mathrm{~dB}$. If not, adjust R 22 on the receiver Audio Board, 800-294, for exactly +10 dBm output.

Composite Mode:

To select "COMPOSITE" stereo mode, place jumper plugs (JP) at positions $1,3,6$, and 8 . The "COMPOSITE LEVEL" pot on the front panel now controls the composite output at J2.

2nd CONVERTER / IF AMPLIFIER / DETECTOR, 800-293

2nd Converter/Pre-selector: (Adjustments necessary when changing receiver frequency)

1. Place test meter in "SIG LEVEL" position.
2. Adjust the RF input level (J6) for approximately $1 / 3$ scale reading.
3. Adjust C43, C46, and C48 for maximum signal level.

Other adjustments on the 800-293 Board are factory set and do NOT require field adjustment.

PROGRAMMING THE FREQUENCY SYNTHESIZER, 800-291

Read "THEORY OF OPERATION" of frequency synthesizer, 800-291 on page 14.

On the $944-952 \mathrm{MHz}$ band, the first converter, $800-211 \mathrm{~B}$, is tuned to the center frequency of 948 MHz , and at this center frequency converts to 74.0 MHz . The second converter on Board 800-293 converts to the 10.7 MHz IF frequency, which requires that the Synthesizer Board, $800-291$, generate a L.O. frequency of $59.3-67.3 \mathrm{MHz}$. This is done by selection of 16 "DIP" switches located on Board 800-291 as follows:

1. Look up desired frequency on the enclosed list of frequencies. (The same frequency as transmitter STL15C). Frequencies are available in 12.5 KHz steps. Frequencies between steps can be obtained by shifting the reference oscillator (see [5] below).
2. Position switches according to the frequency table. Double-check switch positions to avoid error.
3. Place "TEST METER" switch in "AFC LEVEL" position. With synthesizer operating and "locked" indicated by the green "AFC LOCK" light, the "AFC LEVEL" should be zero (0) VU $\pm 1.5 \mathrm{VU}$. If the newly selected frequency differs from the original frequency by several megahertz, the VCO frequency should be adjusted for a " 0 VU " AFC level as follows:
(a). Remove cover of the VCO box (located next to J1 on 800-291 board).
(b). Using an insulated adjustment tool such as Marti Part No. 930-100, adjust the variable capacitor C36 (see Drawing 702-099) for the " 0 VU " reading. The plates of capacitor C36 should be between $10 \%-30 \%$ of maximum (fully meshed). If not, set C36 in this position and adjust L6 for " 0 VU " on the meter by using an insulated slug tuning tool such as Marti No. 930-069.
(c). Replace box cover being careful to properly engage all shield contact fingers.
4. If desired, the synthesized frequency can be measured at J1 using a frequency counter. The frequency should be the "L.O." frequency corresponding to the "Channel" frequency selected. Any error can be corrected by adjustment of Cll through the hole in the cover of the
reference oscillator box cover on Board, 800-291. See Drawing 702-099 for location. Use insulated adjustment tool $730-069$ or equivalent.

NOTE: The SQUELCH RELAY of the R-15C receiver will not open until the "AFC LOCK" light is on.
5. When the receiver operating frequency is changed more than 0.1%, the first converter adjustments, as well as C43, C46, and C48, of the pre-selector on Board 800-293 must be "peaked" (tuned for maximum "SIG LEVEL") in order to maintain performance.

TABLE 1.

The correct frequency at J1 can be calculated by the formulas in the following table:

Operating Frequency (F)	Converter Type	Measured Frequency at J1	Overtone Crystal Formula
$140-180 \mathrm{MHz}$.	$800-212$	$(F+74) / 3$	$(F+74) / 6$
$200-260 \mathrm{MHz}$.	$800-212$	$(F+74) / 3$	$(F+74) / 6$
$280-340 \mathrm{MHz}$.	$800-213$	$(F+74) / 2$	$(F+74) / 8$
$400-480 \mathrm{MHz}$.	$800-213$	$(F-74) / 2$	$(F-74) / 8$
$890-960 \mathrm{MHz}$.	$800-211$	$(\mathrm{~F}-74) / 4$	$(\mathrm{~F}-74) / 16$
$944-952 \mathrm{MHz}$.	$800-211$	218.5 MHz.	

Channe1	L.O.	DIP Switch S1	DIP Switch S2	941500	56800	00011111000	0010000000
Freq.	Freq.	12345678	910111213141516	941525	56825	001111000	00010000001
(KHz)	(KHz)			941550	56850	0×011110000	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$
940 MHz				941575	56875	0011110000	00010001101
940000	55300	001001000	00100010	941600	56900	$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 1 & 0 & 0 & 0\end{array}$	
940025	55325	00010010000		941625	56925	00111100	00010000011
940050	55350	001101000	001000110	941650	56950	0011100	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$
940075	55375	00101000	001000111	941675	56975	0001110000	000100011111
940100	55400	001001010	001000000	941700	57000	0011101	0001000000
940125	55425	00010010010	001000001	941725	57025		000100000011
940150	55450	001001010		941750	57050	0001111001	0001000100
940175	55475	0001010010	0010100101	941775	57075	$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 1 & 0 & 1\end{array}$	0011001001
940200	55500	00101010	00100010	941800	57100		00010000010
940225	55525	0001001010		941825	57125	$\begin{array}{llllllll}0 & 0 & 1 & 1 & 1 & 0 & 1\end{array}$	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
940250	55550	00101010	001000110	941850	57150	$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$	00010001110
940275	55575	00101010	00100111	941875	57175	$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$
940300	55600	011101000	001000000	941900	57200	$\begin{array}{llllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 & 0\end{array}$	00010000000
940325	55625	$\begin{array}{lllllllll}0 & 1 & 1 & 0 & 1 & 0 & 0 & 0\end{array}$	0001000001	941925	57225		001010000
940350	55650	010101000	0001000100	941950	57250	$\begin{array}{llllllll}0 & 1 & 1 & 1 & 1 & 0 & 0\end{array}$	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$
940375	55675	011101000	001000101	941975	57275	0111100	
940400	55700	011001000	0001000010	Channe	L. 0.	DIP Switch S1	DIP Switch S2
940425	55725			Freq.	Freq.	12345678	910111213141516
940450	55750	011101000	001000110				
940475	55775	0111001000	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$	942 MHz			
940500	55800		001000000	942000	57300	0112100	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$
940525	55825	01110010010	000100000001	942025	57325		0001000011
940550	55850		$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$	942050	57350	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 & 0\end{array}$	
940575	55875	$\begin{array}{llllllll}0 & 1 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$	$0 \begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$	942075	57375	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 & 0\end{array}$	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$
940600	55900	01011010	0×010	942100	57400	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$
940625	55925	01010010010	0	942125	57425	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$	00100001
940650	55950	01110010010	00010001110	942150	57450	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$	
940675	55975	$\begin{array}{lllllllll}0 & 1 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$		942175	57475	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$	0001000101
940700	56000		$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$	942200	57500	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$
940725	56025	00001110000	00010000001	942225	57525		0001000011
940750	56050	00001010000	0001000100	942250	57550	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$	00010001110
940775	56075	0	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$	942275	57575	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$	00010001111
940800	56100	00001110000	0001000010	942300	57600	00000000001	0001000000
940825	56125	0000110000	00010000011	942325	57625	000000000	0 0 1 0 0 0 0 1
940850	56150	0×001110000	0×1010001110	942350	57650	00000000001	001000100
940875	56175	00001110000	0010100111	942375	57675	00000000001	00010001001
940900	56200	00001110010	001000000	942400	57700		001000010
940925	56225	$0 \begin{array}{lllllllll}0 & 0 & 0 & 1 & 1 & 0 & 1 & 0\end{array}$	000100000001	942425	57725	00000000001	0001000011
940950	56250	00001110010	0010100100	942450	57750		001000110
940975	56275	00011010	00100101	942475	57775	00000000	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$
Channei	L. 0.	DIP Switch S1	DIP Switch S2	942500	57800	0000000011	001000000
Freq.	Freq.	$1 \begin{array}{llllllll}1 & 3 & 4 & 5 & 7\end{array}$	910111213141516	942525	57825	0	00010000001
(KHz)	(KHz)			942550	57850	0	0010000100
941 MHz				942575	57875	0000000011	0
941000	56300	00011010	00100010	942600	57900	$\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 1\end{array}$	00010000010
941025	56325			942625	57925	00000001	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
941050	56.350	000111010	00100110	942650	57950	$\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 1\end{array}$	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$
941075	56375	000011110010	00010000111	942675	57975	0	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$
941100	56400	$0 \begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 0 & 0\end{array}$	001000000	942700	58000	010100000001	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$
941125	56425	01001010000	0001000001	942725	58025	$0 \begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 1\end{array}$	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0\end{array}$
941150	56450	01001110000	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 1 & 0 & 0\end{array}$	942750	58050	0110000001	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$
941175	56475	010011000	00100101	942775	58075	01100000001	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & \end{array}$
941200	56500	0100110000		942800	58100	011000000011	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$
941225	56525	0100110000	0001000011	942825	58125	$0 \begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 1\end{array}$	0
941250	56550	01001010000	001000110	942850	58150	0100000001	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$
941275	56575	01001110000	$0 \begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$	942875	58175	$\begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1\end{array}$	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & \end{array}$
941300	56600	010111010	00100000	942900	58200	010000011	00100000
941325	56625	$\begin{array}{lllllllll}0 & 1 & 0 & 1 & 1 & 0 & 1 & 0\end{array}$	00010000001	942925	58225	010000011	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 1\end{array}$
941350	56650	$\begin{array}{llllllllll}0 & 1 & 0 & 1 & 1 & 0 & 1 & 0\end{array}$	000100100	942950	58250	0	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$
941375	56675	010101110010		942975	58275	010000011	0010010
041400	56700	0100110010	00010000010	Channel	L. 0 .	DIP Switch S1	DIP Switch S2
941425	56725	01001010010	00010000011	Freq.	Freq.	12345678	910111213141516
941450	56750	$\begin{array}{llllllllll}0 & 1 & 0 & 1 & 1 & 0 & 1 & 0\end{array}$	00010001110	(KHz)	(KHz)		
941475	56775	0100110010	0001000111	943 MHz			

943000	58300	$\begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 0 & 1 & 1\end{array}$	0001900010
943025	58325	01100000011	0010001
943050	58350	01100000011	0001100110
943075	58375	01100000011	0001000111
943100	58400	00010000001	000100000
943125	58425	00010000001	0001800001
943150	58450	00010000001	00100100
943175	58475	0001000001	0001000101
943200	58500	0001000001	010100010
943225	58525	001000001	00010000011
943250	58550	00010000001	00 ± 00110
943275	58575	0001000001	00010001111
943300	58600	00010100000111	0001000000
943325	58625	00010000011	0001000001
943350	58550	00010000011	0001000100
943375	58675	0×1010000011	0001000101
943400	58700	0	0011000010
943425	58725	00010000011	0010001
943450	58750	00010000011	001000110
943475	58775	001000011	0010011
943500	58800	$0 \begin{array}{llllllll}0 & 1 & 1 & 0 & 0 & 0 & 0 & 1\end{array}$	001000000
943525	58825	01010000001	001000001
943550	58850	01010000001	0×101000100
943575	58875	010100000011	001000101
943600	58900	01010000001	00010000010
943625	58925	$0 \begin{array}{lllllllll}0 & 1 & 1 & 0 & 0 & 0 & 0 & 1\end{array}$	
943650	58950	01110000001	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$
943675	58975	010110000001	
943700	59000	01010000011	0001000000
943725	59025	$\begin{array}{lllllllll}0 & 1 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$	00010000001
943750	59050	0111000011	001000100
943775	59075	010100000111	00010001001
943800	59100	010110000011	0001000010
943825	59125	01010000011	0
943850	59150	01210000011	0010
943875	59175	$\begin{array}{llllllllll}0 & 1 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$	00010001111
943900	59200	000001000001	0001000000
943925	59225	$\begin{array}{llllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 1\end{array}$	00010000001
943950	59250	00001100001	0001000100
943975	59275	$0 \begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 0 & 1\end{array}$	001000101
Channel	L.O.	DIP Swicch S1	DIP Switch S2
$\begin{aligned} & \hline \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	$\begin{aligned} & \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	12345678	910111213141516
944 Mriz			
944000	59300	00001000001	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$
944025	59325	00001100001	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
944050	59350	0000100001	$0 \begin{array}{llllllll}0 & 1 & 0 & 0 & 1 & 1\end{array}$
944075	59375		0001000111
944100	59400	000010100011	00010000000
944125	59425	000011000111	00010000001
944150	59450	0	00100100
944175	59475	0	001000101
944200	59500	$0 \begin{array}{lllllllll}0 & 0 & 0 & 1 & 0 & 0 & 1 & 1\end{array}$	001000010
944225	59525	000	00010000011
944250	59550	000001000011	001000110
944275	59575	0	000110001111
944300	59600	0100100001	001000000
944325	59625	0100100001	000100000011
944350	59650	0	
944375	59675	0100100001	001000101
944400	59700	01001000001	00010000010
944425	59725	011001000011	
944450	59750	$0 \begin{array}{llllllll}0 & 1 & 0 & 1 & 0 & 0 & 0 & 1\end{array}$	00010001110
944475	59775	$\begin{array}{lllllllll}0 & 1 & 0 & 1 & 0 & 0 & 0 & 1\end{array}$	
944500	59800		001000000
944525	59825		00010000001
944550	59850	$\begin{array}{lllllllll}0 & 1 & 0 & 1 & 0 & 0 & 1 & 1\end{array}$	00100010100
944575	59875	0100100011	001001001
944600	59900	01010011	001000010

944625	59925	$\begin{array}{lllllllll}0 & 1 & 0 & 1 & 0 & 0 & 1 & 1\end{array}$	001100011
944650	59950	01010011	001000110
944675	59975	01100100011	001000111
944700	60000	001100001	001000000
944725	60025	0010100001	00010000001
944750	60050	0011100001	0001000100
944775	60075	0011100001	00100101
944800	60100	0	01010000010
944825	60125	00010100001	0×010000011
944850	60150	00010100001	001000110
944875	60175	0010100001	001100111
944900	60200	000111100011	00100000
944925	60225	0×1011100011	0011000001
944950	60250	0	001000100
944975	60275	0001100011	001000101
Channel	L. 0.	DIP Switch S1	DIP Switch S2
$\begin{aligned} & \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	$\begin{aligned} & \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	12345678	910111213141516
945 MHz			
945000	60300	0011100011	0001000010
945025	60325	001110011	00010000011
945050	60350		0×010001110
945075	60375	00011100011	0101000111
945100	60400	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 & 1\end{array}$	0
945125	60425		0
945150	60450	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 & 1\end{array}$	0
945175	60475	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 & 1\end{array}$	000100101
945200	60500	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 & 1\end{array}$	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$
945225	60525	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 & 1\end{array}$	0
945250	60550	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 & 1\end{array}$	0
945275	60575	$0 \begin{array}{lllllllll}0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0\end{array}$	00010001111
945300	60600	0111100011	001000000
945325	60625	$\begin{array}{llllllllll}0 & 1 & 1 & 0 & 0 & 1 & 1\end{array}$	0001000001
945350	60650	0111100011	00010001000
945375	60675		
945400	60700		001000010
945425	60725	0101100011	001100011
945450	60750	0101100011	001000110
945475	60775		
945500	60800	0000010001	0001000000
945525	60825	000000100011	00010000001
945550	60850		0001000100
945575	60875	0000010001	001000101
945600	60900		00100010
945625	60925	0000010001	001000011
945650	60950		
945675	60975	000001001	001000111
945700	61000	00000010011	00010000000
945725	61025	00000010011	001000001
945750	61050	0000011011	0×101000100
945775	61075	000000110011	
945800	61100		001000010
945825	61125	0000011011	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
945850	61150	00001011	00010001110
945875	61175	$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 1 & 0 & 1 & 1\end{array}$	
945900	61200	$0 \begin{array}{llllllll}0 & 1 & 0 & 0 & 1 & 0 & 0 & 1\end{array}$	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$
945925	61225	$0 \begin{array}{llllllll}0 & 1 & 0 & 0 & 1 & 0 & 0 & 1\end{array}$	00010000001
945950	61250	01000010001	001000100
945975	61275	0100010001	0001000101
Channel	L. 0.	DIP Switch S1	DIP Switch S2
$\begin{aligned} & \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	$\begin{aligned} & \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	$\begin{array}{llllllll}1 & 2 & 3 & 5 & 6 & 7\end{array}$	910111213141516
946 MHz			
946000	61300	$\begin{array}{llllllllll}0 & 1 & 0 & 0 & 1 & 0 & 0 & 1\end{array}$	00100010
946025	61325		001000011
946050	61350	01000010001	0001000110
946075	61375	011001001	00100111
946100	61400	01001011	00100000

946125	61425	0100010011	00100000
946150	61450	010001011	0010010
946175	61475	011001011	0010010
946200	61500	01100010011	00100010
946225	61525	01100010011	00010000011
946250	61550	$0 \begin{array}{llllllll}0 & 1 & 0 & 0 & 1 & 0 & 1 & 1\end{array}$	00100110
946275	61575	010001001	0001000111
946300	61600	00010010001	0010000
946325	61625	001001001	0010000
946350	61550	00010010001	0011000100
946375	61675	001001001	0010010
946400	61700	00110100	0010000010
946425	61725	$0 \begin{array}{llllllll}0 & 1 & 0 & 1 & 0 & 0 & 1\end{array}$	0011000011
946450	61750	00010010001	000100011
946475	61775	00010010001	00010001111
946500	61800	00010010011	001000000
946525	61825	00010010011	00010000001
946550	61850	00110101011	00010001000
946575	61875	0	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$
946600	61900	0001001011	001000010
946625	61925	001001011	0001000011
946650	61950	00010010011	0
946575	61975	001001011	$\begin{array}{llllllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$
946700	62000	$0 \begin{array}{llllllll}0 & 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}$	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$
946725	62025	$0 \begin{array}{lllllllll}0 & 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}$	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 1\end{array}$
946750	62050	0111001001	0101000100
946775	62075	01110010001	0001000101
946800	62100	01110010001	08010000010
946825	62125	$\begin{array}{lllllllll}0 & 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}$	0
946850	62150	$0 \begin{array}{llllllll}0 & 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}$	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$
946875	62175	$0 \begin{array}{llllllll}0 & 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}$	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$
946900	62200	0111001011	00010000000
946925	62225	$\begin{array}{lllllllll}0 & 1 & 1 & 0 & 1 & 0 & 1 & 1\end{array}$	$0 \begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 1\end{array}$
946950	62250	$\begin{array}{llllllll}0 & 1 & 1 & 0 & 1 & 0 & 1 & 1\end{array}$	000100001100
946975	62275		
Channel	L. 0.	DIP Switch S1	$\frac{\text { DIP Switch S2 }}{9} \frac{10111213141516}{151}$
$\begin{aligned} & \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	$\begin{aligned} & \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	12345678	
947 MHz			
947000	62300	01101011	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$
947025	62325	011100101	$\begin{array}{llllllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
947050	62350	011101011	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$
947075	62375		$\begin{array}{llllllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$
947100	62400	0000110001	00100000
947125	62425	00011001	00010000001
947150	62450	00001110001	0010100100
947175	62475	$0 \begin{array}{llllllll}0 & 0 & 0 & 1 & 1 & 0 & 0 & 1\end{array}$	0001000101
947200	62500	$\begin{array}{lllllllllll}0 & 0 & 0 & 1 & 1 & 0 & 0 & 1\end{array}$	00010000010
947225	62525	00001110001	00010000011
947250	62550	00001110001	0×1000110
947275	62575	$0 \begin{array}{llllllll}0 & 0 & 1 & 1 & 0 & 0 & 1\end{array}$	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$
947300	62600		0
947325	62625	$\begin{array}{llllllllll}0 & 0 & 0 & 1 & 1 & 0 & 1 & 1\end{array}$	00010000001
947350	62650	$\begin{array}{lllllllll}0 & 0 & 0 & 1 & 1 & 0 & 1 & 1\end{array}$	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$
947375	62675	$\begin{array}{lllllllll}0 & 0 & 0 & 1 & 1 & 0 & 1 & 1\end{array}$	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$
947400	62700	000011011	0 0 1 0 0 0 1 0
947425	62725		$\begin{array}{llllllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
947450	62750	$\begin{array}{llllllllll}0 & 0 & 0 & 1 & 1 & 0 & 1 & 1\end{array}$	0×101000110
947475	62775		001000111
947500	62800		0010100000
947525	62825	01001010001	00010000001
947550	62850	$\begin{array}{llllllll}0 & 1 & 0 & 1 & 1 & 0 & 0 & 1\end{array}$	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$
947575	62875	$\begin{array}{lllllllll}0 & 1 & 0 & 1 & 1 & 0 & 0 & 1\end{array}$	000100011001
947600	62900	01001101001	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$
947625	62925	$0 \begin{array}{lllllllll}0 & 1 & 0 & 1 & 1 & 0 & 0 & 1\end{array}$	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
947650	62950	$\begin{array}{llllllll}0 & 1 & 0 & 1 & 1 & 0 & 0 & 1\end{array}$	0 0 1 0 0 1 1 0
947675	62975	01100110001	$\begin{array}{llllllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$
947700	63000	$\begin{array}{lllllllll}0 & 1 & 0 & 1 & 1 & 0 & 1 & 1\end{array}$	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$
947725	63025	01100110011	00 1 0 0 0 0 1

947750	63050	0100111011	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$
947775	63075	$\begin{array}{llllllllll}0 & 1 & 0 & 1 & 1 & 0 & 1 & 1\end{array}$	00100101
947800	63100	010011011	00100010
947825	63125	01100111011	001000011
947850	63150	$\begin{array}{llllllllll}0 & 1 & 0 & 1 & 1 & 0 & 1 & 1\end{array}$	00010011
947875	63175		0010011
947900	63200	001111001	001000000
947925	63225	$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$	00100001
947950	63250	0	0×1010001000
947975	63275		00100101
Channel	L. 0.	DIP Switch Sl	DIP Switch S2
$\begin{aligned} & \hline \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	$\begin{aligned} & \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	12345678	910111213141516
948 MHz			
948000	63300	$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$
948025	63325	$0 \begin{array}{llllllll}0 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$	00010000011
948050	63350	$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$	0001000110
948075	63375	$\begin{array}{llllllll}0 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$	001000111
948100	63400	$\begin{array}{llllllllll}0 & 0 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	00100000
948125	63425	$\begin{array}{llllllllll}0 & 0 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	00010000001
948150	63450	$\begin{array}{llllllllll}0 & 0 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	001000100
948175	63475	$0 \begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	001000101
948200	63500		0001000010
948225	63525	$0 \begin{array}{lllllllll}0 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	00010000111
948250	63550	$0 \begin{array}{llllllll}0 & 0 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$
948275	63575	$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	001000111
948300	63600		0
948325	63625	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$	001000001
948350	63650	01111110001	0001000100
948375	63675	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$
948400	63700		00010000010
948425	63725	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$	0
948450	63750		0×010001110
948475	63775	$\begin{array}{llllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$	0011001011
948500	63800	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	00010000000
948525	63825	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	0
948550	63850	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	0001000100
948575	63875	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	00010001001
948600	63900	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	0001000010
948625	63925	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	001000011
948650	63950	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	001000110
948675	63975	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	00100111
948700	64000	0×0000000000	101000000
948725	64025	00000000	10100001
948750	64050	000000000	101000100
948775	64075	000000000	10010001001
948800	64100	00000000000	101000010
948825	64125	00000000000	10010000011
948850	64150	00000000	1001000110
948875	64175	000000000	1001000111
948900	64200	0000000010	1001000000
948925	64225	00000010	10100001
948950	64250	00000010	10100100
948975	64275	00000010	1001000101
Channel	L. 0.	DIP Switch S1	DIP Switch S2
$\begin{aligned} & \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	$\begin{aligned} & \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	$1 \begin{array}{llllllll}1 & 3 & 4 & 5 & 6 & 7\end{array}$	910111213141516
949 MHz			
949000	64300	0000000010	10010000010
949025	64325	000000010	1001000011
949050	64350	000000010	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$
949075	64375	0000000010	101000111
949100	64400	010000000	1001000000
949125	64425	01100000000	1001000001
949150	64450	01010000000	1001000100
949175	64475	01000000	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$
949200	64500	011000000000	101000010
949225	64525	0100000000	101000011

949250	64550	$\begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$	1001000110
949275	64575	0110000000	$\cdots 01000111$
949300	64600	0110000010	10100000
949325	64625	0110000010	101000001
949350	64650	$0 \begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 0 & 1 & 0\end{array}$	$\begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$
949375	64675	01100000010	1010010
949400	64700	01100000010	10100010
949425	64725	01100000010	10010001
949450	64750	01100000010	10100110
949475	64775	$0 \begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 0 & 1 & 0\end{array}$	± 010011
949500	64800	001000000	1010000
949525	64825	001000000	10100001
949550	64850	00010000000	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$
949575	64875	00010000000	10010001001
949600	64900	00010000000	100100010
949625	64925	001000000	$1 \begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
949650	64950	0001000000	10010001110
949675	64975	001000000	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$
949700	65000	0011000010	1001000000
949725	65025	00010000010	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 0 & 0 & 1\end{array}$
949750	65050	000100000010	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$
949775	65075	0001000010	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$
949800	65100	0001000010	1001000010
949825	65125	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
949850	65150	00010000010	$1 \begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$
949875	65175	$0 \begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$	100110001111
949900	65200	01110000000	2012000000
949925	65225	0111000000	101000001
949950	65250	011100000	1001000100
949975	65275	01100000	
Channel	L. 0.	DIP Switch S1	DIP Switch S2
$\begin{aligned} & \hline \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	$\begin{aligned} & \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	12345678	910111213141516
950 MHz			
950000	65300	01110000000	10010000010
950025	65325	$0 \begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$	10010000011
950050	65350	0111000000	10010001110
950075	65375	01110000000	$1 \begin{array}{llllllll}1 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$
950100	65400	0111000010	10100000
950125	65425	$\begin{array}{lllllllll}0 & 1 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$	100110000001
950150	65450	$\begin{array}{lllllllll}0 & 1 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$	101000100
950175	65475	$0 \begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$	10100101
950200	65500	$\begin{array}{lllllllll}0 & 1 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$	1001000010
950225	65525	010100000110	1001000011
950250	65550	010110000010	10010001110
950275	65575	01010000010	10010001111
950300	65600	000210000	101000000
950325	65625	000100000	100100000011
950350	65650	00010000	101000100
950375	65675	00010000	1001000101
950400	65700	0000100000	1001000010
950425	65725	0000100000	$1 \begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
950450	65750	000010000	1001000110
950475	65775	0000100000	
950500	65800	000100010	10100000
950525	65825	0×0011000110	$\begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 0 & 0 & 1\end{array}$
950550	65850	010001100010	1001000100
950575	65875	0000100010	10010001001
950600	65900	0000100010	10010000010
950625	65925	0000100010	1001000011
950650	65950	000110010	$1 \begin{array}{llllllll}1 & 1 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$
950675	65975	0000100010	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$
950700	66000	01010000	10100000
950725	66025	0101010000	10010000001
950750	66050	01101100000	$1 \begin{array}{llllllll}1 & 1 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$
950775	66075	010010000	10010001001
950800	66100	0100100000	$1 \begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$
950825	66125	011010000	
950850	66150	01010000	101000110

950875	66175	01010000	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & 1\end{array}$
950900	55200	010010010	101100000
950925	66225	0100100010	1001000001
950950	66250	010010010	1001000100
950975	66275	010010010	100100101
Channel	L. 0.	DIP Switch Sl	DIP Switch S2
$\begin{aligned} & \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	Freq. (KHz)	12345678	910111213141516
951 MHz			
951000	65300	0100100010	100100010
951025	66325	$\begin{array}{lllllllll}0 & 1 & 0 & 1 & 0 & 0 & 1 & 0\end{array}$	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
951050	66350	$\begin{array}{lllllllll}0 & 1 & 0 & 1 & 0 & 0 & 1 & 0\end{array}$	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$
951075	66375	0110100010	$\begin{array}{llllllllll}1 & 0 & 1 & 0 & 0 & 1 & 1\end{array}$
951100	66400	00110000	$\begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$
951125	66425	001100000	$\begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 0 & 0 & 1\end{array}$
951150	56450	0001100000	$1 \begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$
951175	66475	001100000	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$
951200	66500	00110000	1001000010
951225	66525	0001100000	$1 \begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
951250	66550	001110000	$1 \begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$
951275	66575	001110000	1001000111
951300	56600	0×0111100010	$1 \begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$
951325	66625	00011100010	$1 \begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 0 & 0 & 1\end{array}$
951350	66650	$\begin{array}{llllllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 & 0\end{array}$	1001000100
951375	66675	$0 \begin{array}{lllllllll}0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0\end{array}$	10010001001
951400	66700	01011100010	1001000010
951425	66725	0	
951450	66750	$0 \begin{array}{lllllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 & 0\end{array}$	$1 \begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$
951475	66775	$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 & 0\end{array}$	10010001111
951500	66800	011110000	10100000
951525	66825	011110000	1001000001
951550	66850		1001000100
951575	66875	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 & 0\end{array}$	10010001001
951600	66900	0111110000	1001000010
951625	66925	011110000	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 0 & 1\end{array}$
951650	66950	011110000	101000110
951675	66975	0111100000	$\begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$
951700	67000		1001000000
951725	67025	0101100010	1001000001
951750	67050	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 0 & 0 & 1 & 0\end{array}$	1001000100
951775	67075	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 0 & 0 & 1 & 0\end{array}$	$\begin{array}{llllllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$
951800	67100	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 0 & 0 & 1 & 0\end{array}$	$1 \begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$
951825	67125	0111100010	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
951850	67150	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 0 & 0 & 1 & 0\end{array}$	10010001110
951875	67175		10010001111
951900	67200	0000010000	100100000
951925	67225	00001000	10010000001
951950	67250	000001000	1001000100
951975	67275	00001000	101000101
Channel	L. 0.	DIP Switch S1	DIP Switch 52
$\begin{aligned} & \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	$\begin{aligned} & \text { Freq. } \\ & (\mathrm{KHz}) \end{aligned}$	12345678	910111213141516

946125	61425	01000110011	0010000
946150	61450	01000010011	001000100
946175	61475	01100010011	001000101
946200	61500	01001011	001000010
946225	61525	0100010011	001000011
946250	61550	0110001011	00010001110
946275	61575	011000110011	001000111
946300	61600	001001001	00100000
946325	61625	00101001	00100001
946350	61650	00010010001	0011000100
946375	61675	001001001	001000101
946400	61700	001001001	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$
946425	61725	001001001	00010090011
946450	61750	001001001	00100110
946475	61775	0×10100100001	
946500	51800	00101011	00103000
946525	61825	001001011	0001000001
946550	61850	001001011	001000100
946575	61875	0001010011	$0 \begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$
946600	61900	001101011	0001000010
946625	61925	0010010011	0001000011
946650	61950	001001011	0001000110
946675	61975	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 1 & 0 & 1 & 1\end{array}$	001000111
946700	62000	011001001	00100000
946725	62025	0×11001001	001000001
946750	62050	011001001	001.03100
946775	62075	0111010001	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 3 & 1 & 0 & 1\end{array}$
946800	62100	01110010001	001000010
946825	62125	$0 \begin{array}{llllllll}0 & 1 & 0 & 1 & 0 & 0 & 1\end{array}$	0001600011
946850	62150	011001001	001000110
946875	62175	01101001	00100111
946900	62200	01110010011	001000000
946925	62225	$\begin{array}{lllllllll}0 & 1 & 1 & 0 & 1 & 0 & 1 & 1\end{array}$	$001 \div 0001$
946950	62250	$\begin{array}{lllllllll}0 & 1 & 1 & 0 & 1 & 0 & 1 & 1\end{array}$	00100100
946975	62275	011001011	$001 \leqslant 0101$
Channel	L. 0.	DIP Switch S1	DIP Switch S2
$\begin{aligned} & \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	$\begin{aligned} & \hline \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	12345678	$9101112: 3141516$
947 MHz			
947000	62300	0111010111	001003010
947025	62325	01101011	001800011
947050	62350	01101011	001000110
947075	62375	01101011	00100111
947100	62400	00011001	$0010 c 00000$
947125	62425	00011001	00100001
947150	62450	00011001	0×010601100
947175	62475	000110001	001003101
947200	62500	00011001	0001000010
947225	62525	00011001	001005011
947250	62550	00011001	0001000110
947275	62575	0000110001	0×101800111
947300	62600	00011011	$0010 \cdot 000$
947325	62625	00001110011	00102001
947350	62650	0000110111	0001003100
947375	62675	00001110011	001000101
947400	62700	000110101	0001000010
947425	62725	0000110011	0001000011
947450	62750	00011011	001000110
947475	62775	0001110011	001606111
947500	62800	010011001	00011003000
947525	62825	01011001	00100001
947550	62850	01001110001	001003100
947575	52875	0100110001	00150101
947600	62900	0	00120010
947625	62925	0101001110001	0010×01
947650	62950	01011001	00103110
947675	62975	0100110001	001×10111
947700	63000	010011011	00160000
947725	63025	01101101011	$001 \leqslant 001$

947750	63050	$\begin{array}{llllllllll}0 & 1 & 0 & 1 & 1 & 0 & 1 & 1\end{array}$	0001000100
947775	63075	0100110011	0001000101
947800	63100	0110110011	00100010
947825	63125	01001101011	0001000011
947850	63150		001000110
947875	63175		00010001111
947900	63200	000111110001	00100000
947925	63225	0	001100001
947950	63250	00011101001	00100100
947975	63275	0001110001	001000101
Channel	L. 0 .	DIP Switch S1	DIP Switch S2
$\begin{aligned} & \hline \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	$\begin{aligned} & \text { Freq. } \\ & (\mathrm{KHz}) \end{aligned}$	12345678	910111213141516
948 MHz			
948000	63300	00111001	00100010
948025	63325	0001110001	001000011
948050	63350	00011110001	0×0110001110
948075	63375	0	$\begin{array}{llllllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$
948100	63400	0010110011	001000000
948125	63425		0×10100000011
948150	63450	$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	0×1010001100
948175	63475	00011110011	001000101
948200	63500	$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	0×101000010
948225	63525	00111011	001000011
948250	63550	00111101011	001000110
948275	63575		$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$
948300	63600	01111001	001000000
948325	63625	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$	0001000001
948350	63650	0	001000100
948375	63675	01011010001	010100010101
948400	63700	011111001	0101000010
948425	63725	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$	001000011
948450	63750	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$	0101000110
948475	63775		001000111
948500	63800	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	001000000
948525	63825		00100001
948550	63850	0 1 1 1 1 0 1 1	001000100
948575	63875	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	0010000101
948600	63900	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	001000010
948625	63925		0011000011
948650	63950	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	001000110
948675	63975		001001111
948700	64000	00000000	100100000
948725	64025	00000000	10100001
948750	64050	000000000	10100100
948775	64075	00000000	10100101
948800	64100	0×000000000	10100010
948825	64125	0000000000	
948850	64150	000000000	10100110
948875	64175	0000000000	
948900	64200	00000000010	$\begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$
948925	64225	000000010	$\begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 0 & 0 & 1\end{array}$
948950	64250	00000000010	10100100
948975	64275	00000010	10100101
Channel	L. 0.	DIP Switch S1	DIP Switch S2
$\begin{aligned} & \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	$\begin{aligned} & \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	1223456678	910111213141516
949 MHz			
949000	64300	00000010	101000010
949025	64325	0×0000000110	1001000011
949050	64350	$0 \begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}$	$1 \begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$
949075	64375	00000000010	10010001111
949100	64400	0100000000	10100000
949125	64425	010000000	101000001
949150	64450	01000000000	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$
949175	64475	0100000000	
949200	64500	0100000000	1001000010
949225	64525	010000000	10100011

949250	64550	01100000000	10010001110
949275	54575	010000000	10100211
949300	64600	010000010	101000000
949325	64625	01100000010	10010000001
949350	64650	01000010	10100100
949375	64675	010000010	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$
949400	64700	010000010	101200010
949425	64725	010000010	10010000011
949450	64750	0100000010	1001000110
949475	64775	0110000010	10010001111
949500	64800	0001000000	1001000000
949525	64825	001000000	101000001
949550	64850	001000000	101000100
949575	64875	0001000000	10010001001
949600	64900	001000000	$\begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$
949625	64925	00010000000	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 3 & 0 & 1 & 1\end{array}$
949650	64950	0	$1 \begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$
949675	64975	00010000000	1001000111
949700	65000	001000010	10010000000
949725	65025	0001000010	1 0 1 0 0 0 0 1
949750	65050	001000010	1001003100
949775	65075	0	$1 \begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$
949800	65100	001000010	1001000010
949825	65125	00010000010	$1 \begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
949850	65150	00100010	1011000110
949875	65175	0011000010	101000111
949900	65200	01110000000	101000000
949925	65225	01110000000	1001000001
949950	65250	011000000	10100100
949975	65275	01100000	10100101
Channe1	L. 0.	DIP Switch S1	DIP Swi=ch S2
$\begin{aligned} & \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	$\begin{aligned} & \text { Freq. } \\ & (\mathrm{KHz}) \end{aligned}$	12345678	910111213141516
950 MHz			
950000	65300	01110000000	1001000010
950025	65325	01110000000	10100.0011
950050	65350	0111000000	10100
950075	65375	011100000	10100111
950100	65400	01110000010	10100000
950125	65425	$0 \begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$	1001000001
950150	65450	0111000010	101005100
950175	65475	011100010	10100101
950200	65500	0111000010	101000010
950225	65525	$\begin{array}{lllllllll}0 & 1 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$	10100011
950250	65550	01011000010	
950275	65575	0111000010	10010001111
950300	65600	00010000	101000000
950325	65625	0×00011000000	
950350	65650	0000100000	$\begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$
950375	65675	00010000	10010001001
950400	65700	0000100000	1001000010
950425	65725	0000100000	101100011
950450	65750	000010000	1010001010
950475	65775	0000100000	$1 \begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$
950500	65800	0000100010	10010000000
950525	65825	000010010	10200001
950550	65850	000010010	1001000100
950575	65875	0000100110	
950600	65900	00010010	10010000010
950625	65925	00010010	1001000011
950650	65950	00010010	
950675	65975	00010010	1001000111
950700	66000	011010000	101000000
950725	66025	010010000	$1 \begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 0 & 0 & 1\end{array}$
950750	66050	010010000	$1010 \hat{i}$
950775	66075	010010000	101000101
950800	66100	0110100000	1001000010
950825	66125	010010000	101000011
950850	66150	01001000	10100110

950875	66175	0110010000	101001
950900	66200	010010010	1001000000
950925	66225	$\begin{array}{lllllll}0 & 1 & 0 & 1 & 0 & 0 & 1\end{array}$	101000
950950	66250	01001001	101001
950975	66275	0101001	1010010
Channe1	L.O.	DIP Switch S1	DIP Switch S2
$\begin{aligned} & \hline \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	$\begin{aligned} & \hline \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	12345678	910111213141516
951 MHz			
951000	66300	0110100010	1001000010
951025	66325	01010010	1001000111
951050	66350	01010010	101100110
951075	66375	010010010	$10100011:$
951100	66400	0001100000	
951125	66425	00110000	10100001
951150	66450	00110000	
951175	66475	00011100000	$\begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$
951200	66500	00110000	1001000010
951225	66525	00110000	1001000011
951250	66550	001100000	10010001110
951275	66575		
951300	66600	$\begin{array}{llllllll}0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & \end{array}$	10100000
951325	66625	0	10100001
951350	66650	0011100010	101000100
951375	66675	0011100010	10100101
951400	66700	0010100010	1001000010
951425	66725	00011100010	101000011
951450	66750		101000110
951475	66775	0001100010	$\begin{array}{llllllllll}1 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$
951500	66800	0111100000	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$
951525	66825	01110000	1001000001
951550	65850	01011100000	101900100
951575	66875	0111100000	$1 \begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$
951600	66900	011110000	10100010
951625	66925	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 & 0\end{array}$	10100011
951650	66950	011110000	10100110
951675	66975	01111100000	$\underline{1010011}$
951700	67000	01110010	10100000
951725	67025	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 0 & 0 & 1 & 0\end{array}$	101000001
951750	67050	0101100010	101000100
951775	67075	0×1111100010	10100101
951800	67100	011110010	$\begin{array}{lllllll} 1 & 0 & 1 & 0 & 0 & 1 & 0 \end{array}$
951825	67125	0111100010	1001000011
951850	67150	0	101000110
951875	67175	011110010	201001111
951900	67200	0	10100000
951925	67225	0000000100000	10100001
951950	67250	0000010000	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$
951975	67275	00001000	10100101
Channel	L.O.	DIP Switch S1	DIP Switch S2
$\begin{aligned} & \text { Freq. } \\ & \text { (KHz) } \end{aligned}$	$\begin{aligned} & \text { Freq. } \\ & (\mathrm{KHz}) \end{aligned}$	12345678	910111213141516

AC LINE.

REFER TO SCHEMATIC DIAGRAM FOR EACH BLOCK BY NUMBER

MART I ELECTRON ICS CLEBURNE, TX $76033-0661$	ORAWING NO. COPYRIGHT $7 / 8 / 93$	$702-100$	TITLE

MARTI ELECTRONICS CLEBURNE, TX $76033-0661$	ORAWING NO. COPYRIGHT $7 / 23 / 93$	$702-099$	R-15C ADJUSTMENT LOCATIONS

Parts List		
Main Frame		
MARTI	702-095	06-23-93
Item	Marti No.	Description
C1	297-201	Capacitor, . 0022 mfd , Type AU disc
C2	297-201	Capacitor, . 0022 mfd , Type AU disc
C3	297-201	Capacitor, . 0022 mfd , Type AU disc
C4	297-201	Capacitor, . 0022 mfd , Type AU disc
F1		Fuse,
L1	330-019	Inductor, VK20010-3B
L2	330-019	Inductor, VK20010-3B
T1	320-046L	Transformer, Power 110 volt AC primary
	320-046AL	Transformer, Power 220 volt AC primary

MART I ELECTRONICS CLEBURNE, TX 76033-0661	$\begin{aligned} & \text { ORAWING NO. } \\ & \begin{array}{c} \text { COPYRIGHT } \\ 7 / 28 / 93 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TITLE } \\ & 890-950 \mathrm{MHZ} \text { CONVERTER } \end{aligned}$

Parts List		
Main Frame		
MARTI	702-095	06-23-93
Item	Marti No.	Description
C1	297-201	Capacitor, . 0022 mfd, Type AU disc
C2	297-201	Capacitor, . 0022 mfd, Type AU disc
C3	297-201	Capacitor, . 0022 mfd , Type AU disc
C4	297-201	Capacitor, . 0022 mfd, Type AU disc
F1		Fuse,
L1	330-019	Inductor, VK20010-3B
L2	330-019	Inductor, VK20010-3B
T1	320-046L	Transformer, Power 110 volt AC primary
	320-046AL	Transformer, Power 220 volt AC primary

Parts List
R-10/950 SF Converter Board
MARTI 800-211 07-29-93

Parts List
R-10/950 SF Converter Board
MARTI 800-211 07-29-93

Item	Marti No.	Description
D2	NOT USED	
D3	NOT USED	
D4	NOT USED	
D5	410-754	Diode, zener Motorola 1N754A 6.3v
J1	550-084	Connector, Phono Jack, Molex 15-24-0503
J2	550-084	Connector, Phono Jack, Molex 15-24-0503
L01	350-044	Inductor, $1.0-2 \mathrm{uH} \mathrm{w} / \mathrm{shield}$ can \#47271
L02	350-040	Inductor, $61 / 2$ turn blue \#144-06J12S
L03	330-007	Inductor, 1 uH Delevan \#1840-10
L04	350-040	Inductor, $61 / 2$ turn blue \#144-06J12S
L05	350-039	Inductor, 2 1/2 turn red \#144-02J12S
L06	350-039	Inductor, $21 / 2$ turn red \#144-02J12S
L07	350-121	Inductor, 10 turn . 15 uH \#70-03
L08	350-163	Inductor, 3 turn 18AWG
L09	350-121	Inductor, 10 turn . 15 uH \#70-03
L10	350-139P	Inductor, 16 AWG 950 MHz silver
L11	350-121	Inductor, 10 turn . $15 \mathrm{uH} \# 70-03$
L12	350-139P	Inductor, 16 AWG 950 MHz silver
L13	700-238	Inductor, 950 MHz Stripline
L14	700-238	Inductor, 950 MHz Stripline
L15	700-238	Inductor, 950 MHz Stripline
L16	350-121	Inductor, 10 turn . 15 uH \#70-03
L17	NOT USED	
L18	NOT USED	
M1	520-052A	Receiver Converter Oven
Q1	440-245	Transistor, SRF3017
Q2	420-090	Transistor, BFY90
Q3	420-090	Transistor, BFY90
Q4	420-090	Transistor, BFY90
Q5	420-966	Transistor, CF300A Telefunken GaAs FET
Q6	part of M1	
Q7	NOT USED	
R01	145-681	Resistor, 680 ohm $1 / 4$ watt 5\% metal film
R02	145-332-1	Resistor, 3.3 k ohm $1 / 4$ watt 2% RL07S332G
R03	145-683	Resistor, 68 k ohm $1 / 4$ watt 5\% metal film
R04	145-683	Resistor, 68 k ohm 1/4 watt 5% metal film
R05	NOT USED	
R06	145-331	Resistor, 330 ohm 1/4 watt 5\% metal film
R07	145-103	Resistor, 10 k ohm $1 / 4$ watt 5% metal film
R08	145-102	Resistor, 1 k ohm $1 / 4$ watt 5% metal film
R09	145-331	Resistor, 330 ohm $1 / 4$ watt 5\% metal film
R10	145-103	Resistor, 10 k ohm $1 / 4$ watt 5\% metal film
R11	145-102	Resistor, 1 k ohm $1 / 4$ watt 5% metal film
R12	145-220	Resistor, 22 ohm 1/4 watt 5\% metal film
R13	145-562-1	Resistor, 5.6 k ohm $1 / 4$ watt 2% RL07S562G
R14	145-102	Resistor, 1 k ohm $1 / 4$ watt 5% metal film
R15	145-752	Resistor, 7.5 k ohm $1 / 4$ watt 5% metal film
R16	145-123	Resistor, 12 k ohm $1 / 4$ watt 5\% metal film
R17	145-271	Resistor, 270 ohm $1 / 4$ watt 5% metal film
R18	145-121-1	Resistor, 120 ohm 1/4 watt 2% RL07S121G
R19	NOT USED	

Parts List
R-10/950 SF Converter Board
MARTI 800-211 07-29-93

Item Marti No. Description
R20 145-101
R21 NOT USED
R22 NOT USED
R23 NOT USED
R24 NOT USED
R25 145-152
X1 350-125
Y1 520-040 520-041 520-052A
800-211B
550-173
350-046
Resistor, 1.5 k ohm $1 / 4$ ohm 5% metal film Mixer, SBL-1X
Crystal socket, CS-109-07
Clip, transistor, Atlee 100-200-1-2 cad pl Receiver Converter Oven
PC Board, Converter R Receiver
Connector, 2 pin Molex Header Coil Cans 20k \#47271-012

Parts List
300 MHz SF Converter Board
MARTI 800-213 07-26-93

Item	Marti No.	Description
$\mathrm{CO1}$	217-104	Capacitor, . 01 mf 50 v GMV disc
C02	217-103	Capacitor, . 1 mf 100 v 10\% mylar
C03	NOT USED	
C04	NOT USED	
C05	NOT USED	
C06	NOT USED	
C07	255-220	Capacitor, 22 pf 5\% NPO disc
C08	JUMPERED	
C09	255-750	Capacitor, 75 pf 5\% NPO disc
C10	255-100	Capacitor, 10 pf 5\% NPO disc
C11	290-521	Capacitor, variable, 5-25 pf GKU-25000
C12	217-103	Capacitor, .1 mf l00v 10\% mylar
C13	255-020	Capacitor, 2 pf 5\% type QC
C14	290-521	Capacitor, variable, 5-25 pf GKU-25000
C15	255-470C	Capacitor, 47pF 5\% 200V ceramic dipped
C16	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C17	290-521	Capacitor, variable, 5-25 pf GKU-25000
C18	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C19	255-050	Capacitor, 5 pf 5\% NPO disc
C20	255-010	Capacitor, 1 pf 5\% type QC
C21	290-521	Capacitor, variable, 5-25 pf GKU-25000
C22	255-220	Capacitor, 22 pf 5\% NPO disc
C23	268-102	Capacitor, . 001 mf 50 v z5U disc $-20+80 \%$
C24	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C25	270-407	Capacitor, monolithic chip, 4.7 pf 50 v 5\%
C26	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C27	290-521	Capacitor, variable, 5-25 pf GKU-25000
C28	268-102	Capacitor, . 001 mf 50 v Z5U disc -20+80\%
C29	NOT USED	
C30	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C31	NOT USED	
C32	290-521	Capacitor, variable, 5-25 pf GKU-25000
C33	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C34	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C35	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C36	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C37	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C38	230-100	Capacitor, variable, trimmer 8-8 pf JMC\#52
C39	230-100	Capacitor, variable, trimmer 8-8 pf JMC\#52
C40	230-100	Capacitor, variable, trimmer 8-8 pf JMC\#52
C41	230-100	Capacitor, variable, trimmer 8-8 pf JMC\#52
C42	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C43	219-200	Capacitor, electrolytic 22uF 25V
C44	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C45	270-407	Capacitor, monolithic chip, 4.7 pf 50v 5\%
C46	NOT USED	
C47	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C48	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C49	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C50	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C51	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%

Parts List			
300 MHz SF Converter Board			
MARTI	800-213	26-93	
Item	Marti No.	Description	
C52	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%	
D1	NOT USED		
D2	NOT USED		
D3	NOT USED		
D4	NOT USED		
D5	410-470	Diode, zener, 1N4732 4.7v	
L01	NOT USED		
L02	NOT USED		
L03	350-044	Inductor, $1.0-2 \mathrm{uH}$ w/shield can \#47271	
L04	330-007	Inductor, 1 uH Delevan \#1840-10	
L05	350-040	Inductor, $61 / 2$ turn blue \#144-06J12S	
L06	350-040	Inductor, $61 / 2$ turn blue \#144-06J12S	
L07	350-039	Inductor, $21 / 2$ turn red \#144-02J12S	
L08	350-039	Inductor, $21 / 2$ turn red \#144-02J12S	
L09	350-121	Inductor, 10 turn. $15 \mathrm{uH} \# 70-03$	
L10	350-162	Inductor, 5 turn 18 AWG	
L11	350-161	Inductor, 4 turn 18 AWG	
L12	330-020	Inductor, . 33 uH	
L13	700-232	Strip Line, Brass (straight)	
L14	700-239	Strip Line, R-10/300 Pre-Selector	
L15	700-232	Strip Line, Brass (straight)	
L16	350-136	Inductor, 14 AWG 450 MHz	
L17	350-135	Inductor, 16 AWG 450 MHz	
L18	350-121	Inductor, 10 turn . $15 \mathrm{uH} \# 70-03$	
M1	520-052A	Receiver Converter Oven	
Q1	NOT USED		
Q2	440-245	Transistor, SRF3017	
Q3	440-245	Transistor, SRF3017	
Q4	440-245	Transistor, SRF3017	
Q5	441-137	Transistor, NE25337 FET K-205	
R01	145-681	Resistor, 680 ohm $1 / 4$ watt 5\% metal film	
R02	145-332-1	Resistor, 3.3 k ohm $1 / 4$ watt 2% RL07S332G	
R03	NOT USED		
R04	NOT USED		
R05	NOT USED		
R06	NOT USED		
R07	145-152	Resistor, 1.5 k ohm 1/4 ohm 5\% metal film	
R08	145-331	Resistor, 330 ohm 1/4 watt 5\% metal film	
R09	145-104	Resistor, 100 k ohm $1 / 4$ watt 5% metal film	
R10	145-331	Resistor, 330 ohm $1 / 4$ watt 5\% metal film	
R11	145-103	Resistor, 10 k ohm $1 / 4$ watt 5\% metal film	
R12	145-102	Resistor, 1 k ohm $1 / 4$ watt 5% metal film	
R13	145-331	Resistor, 330 ohm 1/4 watt 5\% metal film	
R14	145-103	Resistor, 10 k ohm $1 / 4$ watt 5\% metal film	
R15	145-272	Resistor, 2.7 k ohm $1 / 4$ watt 5% metal film	
R16	145-431	Resistor, 430 ohm $1 / 4$ watt 5\% metal film	
R17	145-562	Resistor, 5.6 k ohm $1 / 4$ watt 5% metal film	
R18	145-680-C	Resistor, 68 ohm $1 / 4$ watt 5\% carbon comp	
R19	NOT USED		
R20	145-101	Resistor, 100 ohm 1/4 watt 5\% metal film	
R21	145-123	Resistor, 12 k ohm $1 / 4$ watt 5% metal film	

Parts List
450 MHz SF Converter Board
MARTI 800-213 07-26-93

Item	Marti No.	Description
C01	217-104	Capacitor, . $01 \mathrm{mf} \mathrm{50v} \mathrm{GMV} \mathrm{disc}$
C 02	217-103	Capacitor, . 1 mf 100v 10\% mylar
C03	NOT USED	
C04	NOT USED	
C 05	NOT USED	
C06	217-104	Capacitor, . $01 \mathrm{mf} \mathrm{50v} \mathrm{GMV} \mathrm{disc}$
C07	255-150	Capacitor, 15 pf 5\% NPO disc
C08	JUMPERED	
C09	255-750	Capacitor, 75 pf 5\% NPO disc
C10	255-150	Capacitor, 15 pf 5\% NPO disc
C11	290-522	Capacitor, variable, 2.8-10 pf GKU-10000
C12	217-103	Capacitor, $11 \mathrm{mf} \mathrm{100v} \mathrm{10} \mathrm{\%} \mathrm{mylar}$
C13	255-010	Capacitor, 1 pf 5\% type QC
C14	290-522	Capacitor, variable, 2.8-10 pf GKU-10000
C15	255-470C	Capacitor, 47pF 5\% 200V ceramic dipped
C16	268-102	Capacitor, . $001 \mathrm{mf} \mathrm{50v} \mathrm{Z5U} \mathrm{disc}-20+80 \%$
C17	290-522	Capacitor, variable, 2.8-10 pf GKU-10000
C18	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C19	255-050	Capacitor, 5 pf 5\% NPO disc
C20	255-010	Capacitor, 1 pf 5\% type QC
C21	290-522	Capacitor, variable, 2.8-10 pf GKU-10000
C22	255-150	Capacitor, 15 pf 5\% NPO disc
C23	268-102	Capacitor, . $001 \mathrm{mf} \mathrm{50v} \mathrm{Z5U} \mathrm{disc}-20+80 \%$
C24	270-102	Capacitor, monolithic chip, $1000 \mathrm{pf} 50 \mathrm{v} 5 \%$
C25	270-407	Capacitor, monolithic chip, $4.7 \mathrm{pf} 50 \mathrm{v} 5 \%$
C26	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C27	290-521	Capacitor, variable, 5-25 pf GKU-25000
C28	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C29	NOT USED	
C30	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C31	NOT USED	
C32	290-521	Capacitor, variable, 5-25 pf GKU-25000
C33	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C34	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C35	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C36	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C37	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C38	230-100	Capacitor, variable, trimmer 8-8 pf JMC\#52
C39	230-100	Capacitor, variable, trimmer 8-8 pf JMC\#52
C40	230-100	Capacitor, variable, trimmer 8-8 pf JMC\#52
C41	230-100	Capacitor, variable, trimmer 8-8 pf JMC\#52
C42	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C43	219-200	Capacitor, electrolytic 22uF 25 V
C44	270-102	Capacitor, monolithic chip, $1000 \mathrm{pf} 50 \mathrm{v} 5 \%$
C45	270-407	Capacitor, monolithic chip, $4.7 \mathrm{pf} 50 \mathrm{v} 5 \%$
C46	NOT USED	
C47	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C48	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C49	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C50	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C51	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%

Parts List 450 MHz SF Converter Board		
MARTI	800-213 07-26-93	
Item	Marti No.	Description
C52	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
D1	NOT USED	
D2	NOT USED	
D3	NOT USED	
D4	NOT USED	
D5	410-754	Diode, zener Motorola 1N754A 6.3v
L01	NOT USED	
L02	NOT USED	
L03	350-044	Inductor, $1.0-2 \mathrm{uH}$ w/shield can \#47271
L04	330-007	Inductor, 1 uH Delevan \#1840-10
L05	350-040	Inductor, $61 / 2$ turn blue \#144-06J12S
L06	350-040	Inductor, $61 / 2$ turn blue \#144-06J12S
L07	350-039	Inductor, 2 1/2 turn red \#144-02J12S
L08	350-039	Inductor, 2 1/2 turn red \#144-02J12S
L09	350-121	Inductor, 10 turn . 15 uH \#70-03
L10	350-127	Inductor, 3 turn 16 AWG 3/16 ID
L11	350-127	Inductor, 3 turn 16 AWG 3/16 ID
L12	350-121	Inductor, 10 turn . 15 uH \#70-03
L13	700-239	Strip Line, R-10/300 Pre-Selector
L14	700-239	Strip Line, R-10/300 Pre-Selector
L15	700-239	Strip Line, R-10/300 Pre-Selector
L16	350-136	Inductor, 14 AWG 450 MHz
L17	350-135	Inductor, 16 AWG 450 MHz
L18	350-121	Inductor, 10 turn . 15 uH \#70-03
Q1	NOT USED	
Q2	440-245	Transistor, SRF3017
Q3	440-245	Transistor, SRF3017
Q4	440-245	Transistor, SRF3017
Q5	420-966	Transistor, CF300A Telefunken GaAs FET
R01	145-681	Resistor, 680 ohm $1 / 4$ watt 5\% metal film
R02	145-332-1	Resistor, 3.3 k ohm $1 / 4$ watt 2% RL07S332G
R03	NOT USED	
R04	NOT USED	
R05	NOT USED	
R06	NOT USED	
R07	145-152	Resistor, 1.5 k ohm 1/4 ohm 5\% metal film
R08	145-331	Resistor, 330 ohm $1 / 4$ watt 5\% metal film
R09	145-683	Resistor, 68 k ohm $1 / 4$ watt 5% metal film
R10	145-331	Resistor, 330 ohm $1 / 4$ watt 5\% metal film
R11	145-103	Resistor, 10 k ohm $1 / 4$ watt 5\% metal film
R12	145-102	Resistor, 1 k ohm $1 / 4$ watt 5% metal film
R13	145-331	Resistor, 330 ohm 1/4 watt 5\% metal film
R14	145-223	Resistor, 22 k ohm $1 / 4$ watt 5\% metal film
R15	145-272	Resistor, 2.7 k ohm $1 / 4$ watt 5% metal film
R16	145-221	Resistor, 220 ohm 1/4 watt 5\% metal film
R17	145-752	Resistor, 7.5 k ohm $1 / 4$ watt 5% metal film
R18	145-151	Resistor, 150 ohm $1 / 4$ watt 5% metal film
R19	NOT USED	
R20	145-101	Resistor, 100 ohm $1 / 4$ watt 5\% metal film
R21	145-123	Resistor, 12 k ohm $1 / 4$ watt 5% metal film

```
Parts List
450 MHz SF Converter Board
MARTI 800-213 07-26-93
Item Marti No. Description
----- -----------
R23 145-683
X1 350-124
Y2 520-040
    350-046 Coil Cans 20k #47271-012
    800-213B PC Board, Converter R Receiver
    700-246 Fingerstock, adhesive backed #97-515-02
    520-052A Receiver Converter Oven
    520-041 Clip, transistor, Atlee 100-200-1-2 cad pl
    550-084 Connector, Phono Jack, Molex 15-24-0503
    550-165 Connector, 4 pin Molex Header
```

\square

NOTES

1. Q1 STAGE ONLY ON OUAL frequency versions.
2. F1 IS 10 db atten, on Single frequency versions.
. C7 REPLACED gY JUMPER ON Single frequency versions
$\left.\begin{array}{ll|l|l|l|}\hline \begin{array}{l}\text { MARTI ELECTRONICS } \\ \text { CLEBURNE, TX } \\ \hline\end{array} & \begin{array}{l}\text { DRAWING NO. } \\ \text { COPYRIGHT } \\ 7 / 28 / 93\end{array} & 800-0661\end{array}\right]$
```
Parts List
150 MHz SF Converter Board
```

MARTI 800-212 07-26-93

Item	Marti No.	Description
C 01	217-104	Capacitor, . $01 \mathrm{mf} \mathrm{50v} \mathrm{GMV} \mathrm{disc}$
C 02	217-103	Capacitor, . 1 mf 100 v 10\% mylar
C 03	NOT USED	
C 04	NOT USED	
C05	NOT USED	
C06	NOT USED	
C07	JUMPERED	
C08	255-750	Capacitor, 75 pf 5\% NPO disc
C09	255-150	Capacitor, 15 pf 5\% NPO disc
C10	290-522	Capacitor, variable, 2.8-10 pf GKU-10000
C11	217-103	Capacitor, . $1 \mathrm{mf} \mathrm{loov} \mathrm{10} \mathrm{\%} \mathrm{mylar}$
C12	255-030	Capacitor, 3 pf 5\% type QC
C13	290-521	Capacitor, variable, 5-25 pf GKU-25000
C14	255-180	Capacitor, 18 pf 5\% NPO disc
C15	268-102	Capacitor, . $001 \mathrm{mf} \mathrm{50v} \mathrm{Z5U} \mathrm{disc} \mathrm{-20+80} \mathrm{\%}$
C16	290-522	Capacitor, variable, 2.8-10 pf GKU-10000
C17	268-102	Capacitor, . 001 mf 50 v Z5U disc -20+80\%
C18	255-050	Capacitor, 5 pf 5\% NPO disc
C19	255-010	Capacitor, 1 pf 5\% type QC
C20	290-522	Capacitor, variable, 2.8-10 pf GKU-10000
C21	255-030-1	Capacitor, 3 pf 5\% NPO disc
C22	268-102	Capacitor, . $001 \mathrm{mf} \mathrm{50v} \mathrm{Z5U} \mathrm{disc} \mathrm{-20+80} \mathrm{\%}$
C23	255-100	Capacitor, 10 pf 5\% NPO disc
C24	255-120	Capacitor, 12 pf 5\% NPO disc
C25	268-102	Capacitor, . $001 \mathrm{mf} \mathrm{50v} \mathrm{Z5U} \mathrm{disc} \mathrm{-20+80} \mathrm{\%}$
C26	255-180	Capacitor, 18 pf 5\% NPO disc
C27	268-102	Capacitor, . 001 mf 50 v Z5U disc -20+80\%
C28	NOT USED	
C29	290-522	Capacitor, variable, 2.8-10 pf GKU-10000
C30	268-102	Capacitor, . $001 \mathrm{mf} \mathrm{50v} \mathrm{Z5U} \mathrm{disc} \mathrm{-20+80} \mathrm{\%}$
C31	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C32	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C33	230-100	Capacitor, variable, trimmer 8-8 pf JMC\#52
C34	230-100	Capacitor, variable, trimmer 8-8 pf JMC\#52
C35	230-100	Capacitor, variable, trimmer 8-8 pf JMC\#52
C36	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C37	268-102	Capacitor, . $001 \mathrm{mf} \mathrm{50v} \mathrm{Z5U} \mathrm{disc}-20+80 \%$
C38	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
D1	412-494	Diode, Germanium, 1N270
J1	550-084	Connector, Phono Jack, Molex 15-24-0503
J2	550-084	Connector, Phono Jack, Molex 15-24-0503
L01	NOT USED	
L02	NOT USED	
L03	350-044	Inductor, $1.0-2 \mathrm{uH}$ w/shield can \#47271
L04	330-007	Inductor, 1 uH Delevan \#1840-10
L05	350-043	Inductor, $41 / 2$ turn yellow
L06	350-043	Inductor, $41 / 2$ turn yellow
L07	350-043	Inductor, $41 / 2$ turn yellow
L08	350-043	Inductor, $41 / 2$ turn yellow
L09	350-043	Inductor, $41 / 2$ turn yellow
L10	350-129	Inductor, 8 turn 16 AWG 5/16 ID

Parts List
150 MHz SF Converter Board
MARTI 800-212 07-26-93
Item Marti No. Description
Lil $350-129 \quad$ Inductor, 8 turn 16 AWG 5/16 ID
L12 350-129 Inductor, 8 turn 16 AWG 5/16 ID
Q1 NOT USED Transistor, SRF3017
Q3 440-245 Transistor, SRF3017
Q4 428-837 Transistor, BF966S 3SK88
R01 145-681 Resistor, 680 ohm $1 / 4$ watt 5% metal film R02 145-332-1 Resistor, 3.3 k ohm 1/4 watt 2% RL07S332G
RO3 NOT USED
RO4 NOT USED
R05 NOT USED
R06 NOT USED
R07 145-152
R08 145-331
R09 145-683
R10 145-470-C
RII 145-272
R12 145-102
R13 145-331
R14 145-152
R15 145-300
R16 145-470-C
R17 145-562
R18 145-223
R19 145-241-1
R20 145-474
R21 145-682-1
R22 145-030-C
X1 350-124
Y2 520-040
550-165
511-038
800-212B
520-052A

Resistor, 1.5 k ohm $1 / 4$ ohm 5\% metal film Resistor, 330 ohm $1 / 4$ watt 5% metal film Resistor, 68 k ohm $1 / 4$ watt 5% metal film Resistor, 47 ohm $1 / 4$ watt 5% carbon comp Resistor, 2.7 k ohm $1 / 4$ watt 5% metal film Resistor, $1 k$ ohm $1 / 4$ watt 5% metal film Resistor, 330 ohm $1 / 4$ watt 5% metal film Resistor, 1.5 k ohm $1 / 4$ ohm 5\% metal film Resistor, 30 ohm l/4 watt 5% metal film Resistor, 47 ohm $1 / 4$ watt 5% carbon comp Resistor, 5.6 k ohm $1 / 4$ watt 5% metal film Resistor, 22 k ohm $1 / 4$ watt 5% metal film Resistor, 240 ohm $1 / 4$ watt 2% RL07S241G Resistor, 470 k ohm $1 / 4$ watt 5% metal film Resistor, 6.8 k ohm $1 / 4$ watt 2% RL07S682G Resistor, 3.3 ohm $1 / 4$ watt 5% carbon comp Mixer, SBL-1
Crystal socket, CS-109-07
Connector, 4 pin Molex Header
Terminal, \#1238
PC Board, Converter R Receiver Receiver Converter Oven

Parts List
215 MHz SF Converter Board
MARTI 800-212 07-26-93

Item	Marti No.	Description
CO 1	217-104	Capacitor, . 01 mf 50 v GMV disc
C02	217-103	Capacitor, . 1 mf 100v 10\% mylar
C03	NOT USED	
C04	NOT USED	
C05	NOT USED	
C06	NOT USED	
C07	JUMPERED	
C08	255-750	Capacitor, 75 pf 5\% NPO disc
C09	255-150	Capacitor, 15 pf 5\% NPO disc
C10	290-521	Capacitor, variable, 5-25 pf GKU-25000
C11	217-103	Capacitor, . $1 \mathrm{mf} 100 \mathrm{v} 10 \%$ mylar
C12	255-010	Capacitor, 1 pf 5\% type QC
C13	290-521	Capacitor, variable, 5-25 pf GKU-25000
C14	255-470-1	Capacitor, 47 pf 300v 5% silver mica
C15	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C16	290-522	Capacitor, variable, $2.8-10 \mathrm{pf}$ GKU-10000
C17	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C18	255-050	Capacitor, 5 pf 5\% NPO disc
C19	255-010	Capacitor, 1 pf 5\% type QC
C20	290-522	Capacitor, variable, 2.8-10 pf GKU-10000
C21	255-030-1	Capacitor, 3 pf 5\% NPO disc
C22	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C23	255-100	Capacitor, 10 pf 5\% NPO disc
C24	255-220	Capacitor, 22 pf 5\% NPO disc
C25	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C26	255-180	Capacitor, 18 pf 5\% NPO disc
C27	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C28	NOT USED	
C29	290-522	Capacitor, variable, 2.8-10 pf GKU-10000
C30	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C31	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C32	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C33	230-100	Capacitor, variable, trimmer 8-8 pf JMC\#52
C34	230-100	Capacitor, variable, trimmer 8-8 pf JMC\#52
C35	230-100	Capacitor, variable, trimmer 8-8 pf JMC\#52
C36	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C37	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
D1	412-494	Diode, Germanium, 1N270
J1	550-084	Connector, Phono Jack, Molex 15-24-0503
J2	550-084	Connector, Phono Jack, Molex 15-24-0503
L01	NOT USED	
L02	NOT USED	
L03	350-044	Inductor, $1.0-2 \mathrm{uH}$ w/shield can \#47271
L04	330-007	Inductor, 1 uH Delevan \#1840-10
L05	350-040	Inductor, $61 / 2$ turn blue \#144-06J12S
L06	350-040	Inductor, $61 / 2$ turn blue \#144-06J12S
L07	350-039	Inductor, 2 1/2 turn red \#144-02J12S
L08	350-039	Inductor, 2 1/2 turn red \#144-02J12S
L09	350-039	Inductor, $21 / 2$ turn red \#144-02J12S
L10	350-129	Inductor, 8 turn 16 AWG 5/16 ID
L11	350-129	Inductor, 8 turn 16 AWG 5/16 ID

This page left blank intentionally
This page left blank intentionally

Parts List
R-15C VCO/Synthesizer Board

MARTI 800-291 07-26-93

Item	Marti No.	Description
C01	219-220	Capacitor, electrolytic 22 FF 25 V radial
C 02	299-470	Capacitor, tantalum, $4.7 \mathrm{mf} \mathrm{16v} \mathrm{ECS-F1CE47}$
C03	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C04	219-470	Capacitor, electrolytic 47uF 16V radial
C05	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C06	270-102	Capacitor, monolithic chip, 1000 pf 50 v 5\%
C07	270-102	Capacitor, monolithic chip, 1000 pf 50 v 5\%
C08	270-102	Capacitor, monolithic chip, 1000 pf 50 v 5\%
C09	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C10	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C11	290-523	Capacitor, variable, 3.5-36 pf GXA-36000
C12	290-523	Capacitor, variable, 3.5-36 pf GXA-36000
C13	SELECTED	
C14	299-330	Capacitor, tantalum 33uF 16V ECS-F1CE336K
C15	299-330	Capacitor, tantalum 33uF 16V ECS-F1CE336K
C16	299-151	Capacitor, tantalum, 15 mf 25 v ECS-F1EE156
C17	219-220	Capacitor, electrolytic 22 uF 25 V radial
C18	217-103	Capacitor, $.1 \mathrm{mf} \mathrm{100v} \mathrm{10} \mathrm{\%} \mathrm{mylar}$
C19	217-103	Capacitor, . 1 mf 100 v 10\% mylar
C20	217-103	Capacitor, . $1 \mathrm{mf} \mathrm{100v} \mathrm{10} \mathrm{\%} \mathrm{mylar}$
C21	299-220	Capacitor, tantalum, 2.2 mf 25 v ECS-F1EE22
C22	219-220	Capacitor, electrolytic 22 uF 25 V radial
C23	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C24	270-102	Capacitor, monolithic chip, 1000 pf 50 v 5\%
C25	270-102	Capacitor, monolithic chip, 1000 pf 50 v 5\%
C26	270-102	Capacitor, monolithic chip, $1000 \mathrm{pf} 50 \mathrm{v} 5 \%$
C27	270-330	Capacitor, monolithic chip, 33 pf , 50v 5\%
C28	270-102	Capacitor, monolithic chip, $1000 \mathrm{pf} 50 \mathrm{v} 5 \%$
C29	270-102	Capacitor, monolithic chip, $1000 \mathrm{pf} 50 \mathrm{v} 5 \%$
C30	270-102	Capacitor, monolithic chip, $1000 \mathrm{pf} 50 \mathrm{v} 5 \%$
C31	270-470	Capacitor, monolithic chip, $47 \mathrm{pf} 50 \mathrm{v} 5 \%$
C32	270-101	Capacitor, monolithic chip, 100 pf 50 v 5\%
C33	Selected	
C34	270-407	Capacitor, monolithic chip, 4.7 pf 50 v 5\%
C35	270-407	Capacitor, monolithic chip, $4.7 \mathrm{pf} 50 \mathrm{v} 5 \%$
C36	230-610	Capacitor, variable 4.5-65pF
C37	270-102	Capacitor, monolithic chip, $1000 \mathrm{pf} 50 \mathrm{v} 5 \%$
C38	270-102	Capacitor, monolithic chip, $1000 \mathrm{pf} 50 \mathrm{v} 5 \%$
C39	270-102	Capacitor, monolithic chip, $1000 \mathrm{pf} 50 \mathrm{v} 5 \%$
C40	270-101	Capacitor, monolithic chip, 100 pf 50 v 5\%
C41	270-470	Capacitor, monolithic chip, 47 pf 50v 5\%
C42	270-102	Capacitor, monolithic chip, $1000 \mathrm{pf} 50 \mathrm{v} 5 \%$
C43	270-102	Capacitor, monolithic chip, $1000 \mathrm{pf} 50 \mathrm{v} 5 \%$
C44	270-102	Capacitor, monolithic chip, 1000 pf 50 v 5\%
C45	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C46	217-104	Capacitor, . $01 \mathrm{mf} \mathrm{50v} \mathrm{GMV} \mathrm{disc}$
C47	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C48	270-220	Capacitor, monolithic chip, $22 \mathrm{pf} 50 \mathrm{v} 5 \%$
C49	270-680	Capacitor, monolithic chip, 68 pf 50v 5\%
C50	270-101	Capacitor, monolithic chip, $100 \mathrm{pf} 50 \mathrm{v} 5 \%$
C51	270-101	Capacitor, monolithic chip, 100 pf 50 v 5\%

Parts List			
R-15C	VCO/Synthesizer Board		
MARTI	800-291	26-93	
Item	Marti No.	Description	
C52	270-680	Capacitor, monolithic chip, 68 pf 50v 5\%	
C53	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%	
C54	270-103	Capacitor, monolithic chip 10000pF 10\% XR7	
D1	410-109	Diode, SMV1201-16 hyper-abrupt tuning	
D2	410-470	Diode, zener, 1N4732 4.7v	
D3	410-305	Diode, MMBD101工 chip	
D4	414-007	Diode, Fagor 1N4007	
IC1	400-317	Integrated Circuit, National LM317T	
IC2	405-532	Integrated Circuit, Signetics NE5532AN	
IC3	401-678	Integrated Circuit, UPC 1678G (MMIC)	
IC4	400-503	Integrated Circuit, Fujitsu MB503PF Pre-Sc	
IC5	400-145	Integrated Circuit, MC145152-P2 (PLI)	
L01	330-012	Inductor, 15 uH \#70-27	
L02	330-012	Inductor, $15 \mathrm{uH} \# 70-27$	
L03	330-012	Inductor, 15 uH \#70-27	
L04	330-012	Inductor, 15 uH \#70-27	
L05	330-012	Inductor, 15 uH \#70-27	
L06	330-023	Inductor, \#146-04J08	
L07	330-012	Inductor, 15 uH \#70-27	
L08	330-022	Inductor, . 1 uH \# 90-01	
L09	330-022	Inductor, .1uH \#90-01	
L10	330-022	Inductor, .1uH \#90-01	
M1	520-052AC	R-15C Synthesizer Oven	
Q1	part of M1		
Q2	421-310	Transistor, Siliconix SST-310	
R01	145-241-1	Resistor, 240 ohm 1/4 watt 2% RL07S241G	
R02	145-122-1	Resistor, 1.2 k ohm $1 / 4$ watt 2% RLO7S122G	
R03	145-182-1		
R04	145-331	Resistor, 330 ohm $1 / 4$ watt 5% metal film	
R05	145-331	Resistor, 330 ohm 1/4 watt 5% metal film	
R06	145-680	Resistor, 68 ohm $1 / 4$ watt 5% metal film	
R07	145-680	Resistor, 68 ohm 1/4 watt 5\% metal film	
R08	145-103	Resistor, 10 k ohm $1 / 4$ watt 5% metal film	
R09	145-103	Resistor, $10 k$ ohm $1 / 4$ watt 5% metal film	
R10	145-103	Resistor, lok ohm $1 / 4$ watt 5% metal film	
R11	145-103	Resistor, lok ohm $1 / 4$ watt 5% metal film	
R12	145-683	Resistor, 68 k ohm $1 / 4$ watt 5% metal film	
R13	145-273	Resistor, 27 k ohm $1 / 4$ watt 5% carbon film	
R14	145-102	Resistor, 1 k ohm $1 / 4$ watt 5% metal film	
R15	145-102	Resistor, 1 k ohm $1 / 4$ watt 5% metal film	
R16	145-473	Resistor, 47 k ohm $1 / 4$ watt 5% metal film	
R17	145-393	Resistor, 39 k ohm $1 / 4$ watt 5% carbon film	
R18	145-273	Resistor, 27 k ohm $1 / 4$ watt 5% carbon film	
R19	185-103	Resistor, \#263-10K ohm $1 / 8$ watt 5% chip	
R20	NOT USED		
R21	NOT USED		
R22	185-151	Resistor, \#263-150 ohm $1 / 8$ watt 5% chip	\cdots
R23	185-100	Resistor, \#263-10 ohm $1 / 8$ watt 5\% chip	
R24	185-100	Resistor, \#263-10 ohm $1 / 8$ watt 5% chip	
R25	185-101	Resistor, \#263-100 ohm $1 / 8$ watt 5\% chip	-
R26	185-104	Resistor, \#263-100K ohm $1 / 8$ watt 5% chip	

Parts List		
R-15C	VCO/Synthesizer Board	
MARTI	800-291 07-26-93	
Item	Marti No.	Description
R27	185-102	Resistor, \#263-1K ohm $1 / 8$ watt 5% chip
R28	185-151	Resistor, \#263-150 ohm 1/8 watt 5\% chip
R29	185-100	Resistor, \#263-10 ohm 1/8 watt 5\% chip
R30	185-100	Resistor, \#263-10 ohm 1/8 watt 5\% chip
R31	185-131	Resistor, \#263-130 ohm 1/8 watt 5\% chip
R32	185-103	Resistor, \#263-10K ohm 1/8 watt 5\% chip
S1	530-060	Switch, 8 position DIP 571-4356405
S2	530-060	Switch, 8 position DIP 571-4356405
Y1	011-280	Crystal, 12.8 MHz , Fundamental AT cut, HC-
	500-010	Screw, 4-40 x 3/8" phillips pan head M/S n
	550-070	IC Socket, 8 pin E-CAM
	550-137	Connector, 8 pin Molex Housing \#09-50-8080
	550-190	IC Socket, 28 pin DIP \#151-9028
	700-262	Formed Cover, \#50-CBS 2" x 2 " less standof
	800-291B	PC Board, VCO/Synthesizer
	550-068	IC Socket, 16 pin
	520-040	Crystal socket, CS-109-07
	550-193	Connector, KSM S.FL2-R-SMT surface mount
	520-051	Heatsink, Thermalloy 6030B-TT
	500-055	Lockwasher, \#4 internal tooth small patter
	513-031	Insulator, Sil-Pad K6-54 TO-220 . 147 hole
	513-031-1	Shoulder Washer \#7721-7PPS for TO-220 insu

| MART ELECTRONICS
 CLEBURNE, TX$\|$DRAWING NO.
 COPYRIGHT
 $8 / 6 / 93$ | $800-293$ |
| :--- | :--- | :--- |

2nd CONVERTER/IF AMP.IDETECTOR

Parts List
R-15C IF Amp/FM Detector
MARTI 800-293 08-25-93

.Item	Marti No.	Description
C01	217-104	Capacitor, . $01 \mathrm{mf} \mathrm{50v} \mathrm{GMV} \mathrm{disc}$
$\checkmark \mathrm{CO} 2$	217-104	Capacitor, . $01 \mathrm{mf} \mathrm{50v} \mathrm{GMV} \mathrm{disc}$
C03	217-104	Capacitor, . $01 \mathrm{mf} \mathrm{50v} \mathrm{GMV} \mathrm{disc}$
C04	217-104	Capacitor, . $01 \mathrm{mf} \mathrm{50v} \mathrm{GMV} \mathrm{disc}$
C05	268-203	Capacitor, . $02 \mathrm{mf} \mathrm{50v} \mathrm{Z5U} \mathrm{disc}$
C06	268-203	Capacitor, . 02 mf 50 v Z5U disc
C07	217-104	Capacitor, . $01 \mathrm{mf} \mathrm{50v} \mathrm{GMV} \mathrm{disc}$
C08	217-104	Capacitor, . $01 \mathrm{mf} \mathrm{50v} \mathrm{GMV} \mathrm{disc}$
C09	217-103	Capacitor, . $1 \mathrm{mf} \mathrm{100v} \mathrm{10} \mathrm{\%} \mathrm{mylar}$
C10	217-104	Capacitor, . $01 \mathrm{mf} \mathrm{50v} \mathrm{GMV} \mathrm{disc}$
C11	219-221	Capacitor, electrolytic 220 uF 25 V radial
C12	217-103	Capacitor, . $1 \mathrm{mf} \mathrm{100v} \mathrm{10} \mathrm{\%} \mathrm{mylar}$
C13	219-102	Capacitor, electrolytic 1000uF 16V radial
C14	217-103	Capacitor, . 1 mf 100v 10\% mylar
C15	217-104	Capacitor, . $01 \mathrm{mf} \mathrm{50v} \mathrm{GMV} \mathrm{disc}$
C16	256-131	Capacitor, $130 \mathrm{pf} 5 \% 50 \mathrm{~V}$ NPO disc
C17	255-470C	Capacitor, 47pF 5\% 200V ceramic dipped
C18	290-525	Capacitor, variable trimmer 9-50 pF \#24AAO
C19	299-470	Capacitor, tantalum, $4.7 \mathrm{mf} \mathrm{16v} \mathrm{ECS-F1CE47}$
C20	NOT USED	
C21	268-203	Capacitor, . $02 \mathrm{mf} \mathrm{50v} \mathrm{Z5U} \mathrm{disc}$
, 222	268-203	Capacitor, . 02 mf 50 v Z5U disc
$\stackrel{\text { c23 }}{ }$	295-390	Capacitor, 39 pf 5\% NPO disc
C24	219-102	Capacitor, electrolytic 1000uF 16 V radial
, 225	219-102	Capacitor, electrolytic 1000uF 16V radial
C26	215-301	Capacitor, 300 pf 2.5\% 100v polypropylene
C27	219-470	Capacitor, electrolytic 47 uF 16 V radial
C28	217-103	Capacitor, . $1 \mathrm{mf} \mathrm{100v} \mathrm{10} \mathrm{\%} \mathrm{mylar}$
C29	295-390	Capacitor, 39 pf 5\% NPO disc
C30	295-390	Capacitor, 39 pf 5\% NPO disc
C31	219-100	Capacitor, electrolytic 10uF 25V radial
C32	217-103	Capacitor, . $1 \mathrm{mf} \mathrm{100v} \mathrm{10} \mathrm{\%} \mathrm{mylar}$
C33	215-242	Capacitor, . $0024 \mathrm{mfd} \mathrm{2.5} \mathrm{\%} \mathrm{100v} \mathrm{polypropyle}$
C34	NOT USED	
C35	255-030-1	Capacitor, 3 pf 5\% NPO disc
C36	215-153	Capacitor, . $015 \mathrm{mfd} \mathrm{2.5} \mathrm{\%} \mathrm{100v} \mathrm{polypropylen}$
C37	NOT USED	
C38	255-470C	Capacitor, 47pF 5\% 200V ceramic dipped
C39	295-390	Capacitor, 39 pf 5\% NPO disc
C40	219-102	Capacitor, electrolytic 1000uF 16V radial
C41	217-103	Capacitor, .1 mf 100 v 10\% mylar
C42	217-104	Capacitor, . $01 \mathrm{mf} \mathrm{50v} \mathrm{GMV} \mathrm{disc}$
C43	290-521	Capacitor, variable, 5-25 pf GKU-25000
C44	268-203	Capacitor, . $02 \mathrm{mf} \mathrm{50v} \mathrm{Z5U} \mathrm{disc}$
C45	270-010	Capacitor, monolithic chip, 1pF 50V 5\%
C46	290-521	Capacitor, variable, 5-25 pf GKU-25000
C47	217-104	Capacitor, . $01 \mathrm{mf} \mathrm{50v} \mathrm{GMV} \mathrm{disc}$
C48	290-521	Capacitor, variable, 5-25 pf GKU-25000
C49	268-203	Capacitor, . $02 \mathrm{mf} \mathrm{50v} \mathrm{Z5U} \mathrm{disc}$
C50	217-104	Capacitor, . 01 mf 50 v GMV disc
C51	268-203	Capacitor, . 02 mf 50 v Z5U disc
. 552	217-104	Capacitor, . $01 \mathrm{mf} \mathrm{50v} \mathrm{GMV} \mathrm{disc}$

Parts List
R-15C IF Amp/FM Detector
MARTI 800-293 08-25-93

Item	Marti No.	Description
C53	268-203	Capacitor, . 02 mf 50 v Z5U disc
C54	NOT USED	
C55	290-522	Capacitor, variable, 2.8-10 pf GKU-10000
C56	NOT USED	
C57	217-103	Capacitor, . 1 mf 100v 10\% mylar
C58	290-525	Capacitor, variable trimmer 9-50 pF \#24AAO
C59	217-103	Capacitor, . 1 mf 100 v 10\% mylar
C60	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C61	219-102	Capacitor, electrolytic l000uF 16 V radial
C62	219-102	capacitor, electrolytic 1000uF 16 V radial
C63	219-102	Capacitor, electrolytic 1000uF 16 V radial
C64	290-525	Capacitor, variable trimmer 9-50 pF \#24AAO
C65	295-390	Capacitor, 39 pf 5\% NPO disc
C66	255-161	Capacitor, 160 pf 300v 5\% silver mica
C67	270-270	Capacitor, monolithic chip, 27 pf 50v 5\%
CF1	360-033	Filter, ceramic SFEl0.7MX-A Murata-Erie
CF2	360-033	Filter, ceramic SFE10.7MX-A Murata-Erie
D1	412-494	Diode, Germanium, 1N270
D2	412-494	Diode, Germanium, 1N270
IC1	402-604	Integrated Circuit, Op-Amp OPA-2604AP
IC2	402-604	Integrated Circuit, Op-Amp OPA-2604AP
IC3	400-275	Integrated Circuit, OP-Amp OP275GP/OPA-260
IC4	400-275	Integrated Circuit, OP-Amp OP275GP/OPA-260
IC5	401-235	Integrated Circuit, Sanyo LA1235
L1	330-012	Inductor, 15 uH \#70-27
L2	330-012	Inductor, 15 uH \#70-27
L3	145-470	Resistor, 47 ohm 1/4 watt 5% metal film
L4	350-030	Inductor, 3.0-7 uH w/shield can \#47271-
L5	350-040	Inductor, $61 / 2$ turn blue \#144-06J12S
L6	350-040	Inductor, $61 / 2$ turn blue \#144-06J12S
L7	350-040	Inductor, $61 / 2$ turn blue \#144-06J12S
L8	330-012	Inductor, $15 \mathrm{uH} \mathrm{\# 70-27}$
L9	330-012	Inductor, $15 \mathrm{uH} \# 70-27$
Q1	440-245	Transistor, SRF3017
Q2	440-245	Transistor, SRF3017
Q3	420-310	Transistor, Siliconix J-310 FET
Q4	420-310	Transistor, Siliconix J-310 FET
Q5	430-211	Transistor, MFE211
Q6	420-310	Transistor, Siliconix J-310 FET
R01	145-332	Resistor, 3.3 k ohm $1 / 4$ watt 5% metal film
R02	145-431	Resistor, 430 ohm $1 / 4$ watt 5% metal film
R03	145-102	Resistor, 1 k ohm $1 / 4$ watt 5% metal film
R04	145-222	Resistor, 2.2 k ohm $1 / 4$ watt 5% metal film
R05	145-471	Resistor, 470 ohm 1/4 watt 5% metal film
R06	145-222	Resistor, 2.2 k ohm $1 / 4$ watt 5% metal film
R07	145-332	Resistor, 3.3 k ohm $1 / 4$ watt 5% metal film
R08	145-431	Resistor, 430 ohm $1 / 4$ watt 5% metal film
R09	145-470	Resistor, 47 ohm 1/4 watt 5% metal film
R10	145-471	Resistor, 470 ohm $1 / 4$ watt 5% metal film
R11	145-431	Resistor, 430 ohm 1/4 watt 5\% metal film
R12	145-222	Resistor, 2.2 k ohm $1 / 4$ watt 5% metal film
R13	145-472	Resistor, 4.7 k ohm $1 / 4$ watt 5% metal film

Parts List
Filter, assembly 250 KHz
MARTI 800-207 07-26-93
Item Marti No. Description
C1 255-161 Capacitor, 160 pf 300v 5\% silver mica
C2 256-151 Capacitor, 150 pf 5\% NPO disc
C3 255-241
C4 255-241
C5 255-470C
C6 256-131
FL1 360-037
J1 550-084
J2 550-084
L1 350-025
L2 350-025
L3 350-025
800-207B
Capacitor, 240 pf 300v 5\% silver mica Capacitor, 240 pf 300v 5\% silver mica Capacitor, $47 \mathrm{pF} 5 \% 200 \mathrm{~V}$ ceramic dipped Capacitor, 130 pf $5 \% 50 \mathrm{~V}$ NPO disc
Filter, LC 250 KHz Model 1562
Connector, Phono Jack, Molex 15-24-0503
Connector, Phono Jack, Molex 15-24-0503
Inductor, 1.5 - $3 \mathrm{uH} \mathrm{w} / \mathrm{shield}$ can \#47271-0
Inductor, $1.5-3 \mathrm{uH} \mathrm{w} / \mathrm{shield}$ can \#47271-0
Inductor, 1.5 - $3 \mathrm{uH} w / \mathrm{shield}$ can \#47271-0
PC Board, IF Filter R Receiver

Parts List
R-15C Audio Processing Board
MARTI 800-294 08-25-93

Item	Marti No.	Description
C01	219-102	Capacitor, electrolytic 1000uF 16 V radial
C02	219-102	Capacitor, electrolytic 1000uF 16V radial
C03	NOT USED	
C04	215-622	Capacitor, . $0062 \mathrm{mfd} 2.5 \%$ 100v polypropyle
C05	219-102	Capacitor, electrolytic 1000uF 16V radial
C06	215-682	Capacitor, .0068uF 2.5\% 100V polypropylene
C07	219-102	Capacitor, electrolytic 1000uF 16V radial
C08	215-202	Capacitor, . $002 \mathrm{mfd} 2.5 \%$ 100v polypropylen
C09	215-102	Capacitor, . $001 \mathrm{mfd} 2.5 \%$ 100v polypropylen
C10	219-221	Capacitor, electrolytic 220 uF 25 V radial
C11	219-220	Capacitor, electrolytic 22 uF 25 V radial
C12	219-100	Capacitor, electrolytic 10uF 25 V radial
C13	215-301	Capacitor, 300 pf 2.5\% 100v polypropylene
C14	256-151	Capacitor, 150 pf 5\% NPO disc
C15	219-220	Capacitor, electrolytic 22 uF 25 V radial
C16	253-471	Capacitor, 470 pf 50v 10\% Y5P disc
C17	219-220	Capacitor, electrolytic 22 LF 25 V radial
C18	219-220	Capacitor, electrolytic 22 uF 25 V radial
C19	219-220	Capacitor, electrolytic 22 LF 25 V radial
C20	217-103	Capacitor, . 1 mf 100v 10\% mylar
C21	219-221	Capacitor, electrolytic 220 F F 25 V radial
C22	253-471	Capacitor, 470 pf 50v 10\% Y5P disc
${ }^{\circ} \mathrm{C} 23$	219-100	Capacitor, electrolytic 10uF 25 V radial
C24	219-221	Capacitor, electrolytic 220 uF 25 V radial
C25	253-471	Capacitor, 470 pf 50v 10\% Y5P disc
C26	217-103	Capacitor, . $1 \mathrm{mf} \mathrm{100v} \mathrm{10} \mathrm{\%} \mathrm{mylar}$
C27	217-103	Capacitor, . 1 mf 100v 10\% mylar
C28	215-242	Capacitor, . $0024 \mathrm{mfd} 2.5 \%$ loov polypropyle
C29	255-271C	Capacitor, $270 \mathrm{pF} 5 \% 200 \mathrm{~V}$ ceramic dipped
C30	255-271C	Capacitor, 270pF 5\% 200V ceramic dipped
C31	255-270	Capacitor, 27 pf 5\% NPO disc
C32	255-271C	Capacitor, 270pF 5\% 200V ceramic dipped
C33	255-271C	Capacitor, 270pF 5\% 200V ceramic dipped
C34	255-220	Capacitor, 22 pf 5\% NPO disc
C35	255-241	Capacitor, 240 pf 300v 5\% silver mica
C36	215-701	Capacitor, $700 \mathrm{pf} 2.5 \%$ 100V polypropylene
C37	255-271C	Capacitor, $270 \mathrm{pF} 5 \% 200 \mathrm{~V}$ ceramic dipped
C38	219-470	Capacitor, electrolytic 47uF 16 V radial
C39	215-701	Capacitor, $700 \mathrm{pf} 2.5 \%$ 100V polypropylene
C40	255-220	Capacitor, 22 pf 5\% NPO disc
C41	215-701	Capacitor, $700 \mathrm{pf} 2.5 \% 100 \mathrm{~V}$ polypropylene
C42	226-104	Capacitor, . $1 \mathrm{mf} \mathrm{100v} \mathrm{10} \mathrm{\%} \mathrm{film}$
C43	215-392	Capacitor, . $0039 \mathrm{mfd} \mathrm{2.5} \mathrm{\%} \mathrm{100v} \mathrm{polypropyle}$
C44	219-221	Capacitor, electrolytic 220 F F 25 V radial
C45	219-221	Capacitor, electrolytic 220 uF 25 V radial
C46	219-470	Capacitor, electrolytic 47uF 16V radial
C47	217-103	Capacitor, . $1 \mathrm{mf} \mathrm{100v} \mathrm{10} \mathrm{\%} \mathrm{mylar}$
C48	217-103	Capacitor, . $1 \mathrm{mf} \mathrm{100v} \mathrm{10} \mathrm{\%} \mathrm{mylar}$
C49	219-102	Capacitor, electrolytic 1000uF 16 V radial
- 50	217-103	Capacitor, $.1 \mathrm{mf} \mathrm{100v} \mathrm{10} \mathrm{\%} \mathrm{mylar}$
C51	215-102	Capacitor, . $001 \mathrm{mfd} 2.5 \%$ 100v polypropylen
C52	219-102	Capacitor, electrolytic 1000uF 16V radial

Parts List		
R-15C	Audio Processing Board	
MARTI	800-294	08-25-93
Item	Marti No.	Description
C53	255-750	Capacitor, 75 pf 5\% NPO disc
C54	255-270	Capacitor, 27 pf 5\% NPO disc
C55	255-271C	Capacitor, 270pF 5\% 200V ceramic dipped
C56	256-151	Capacitor, 150 pf 5\% NPO disc
C57	219-102	Capacitor, electrolytic 1000uF 16 V radial
C58	255-750	Capacitor, 75 pf 5\% NPO disc
C59	255-390C	Capacitor, 39pF 5\% 200V ceramic dipped
C60	256-151	Capacitor, 150 pf 5\% NPO disc
C61	256-131	Capacitor, 130 pf 5\% 50V NPO disc
C62	219-102	Capacitor, electrolytic 1000uF 16 V radial
C63	217-103	Capacitor, . $1 \mathrm{mf} \mathrm{100v} 10 \%$ mylar
C64	217-103	Capacitor, . 1 mf 100 v 10\% mylar
C65	217-103	Capacitor, . $1 \mathrm{mf} \mathrm{100v} 10 \%$ mylar
C66	255-390C	Capacitor, 39pF 5\% 200V ceramic dipped
C67	255-390C	Capacitor, 39pF 5\% 200V ceramic dipped
C68	255-470C	Capacitor, $47 \mathrm{pF} 5 \%$ 200V ceramic dipped
C69	255-390C	Capacitor, $39 \mathrm{pF} 5 \% 200 \mathrm{~V}$ ceramic dipped
C70	255-470C	Capacitor, $47 \mathrm{pF} 5 \%$ 200V ceramic dipped
C71	256-680C	Capacitor, 68pF 5\% 200V ceramic dipped
C72	219-470	Capacitor, electrolytic 47 uF 16 V radial
C73	219-470	Capacitor, electrolytic 47uF 16 V radial
C74	219-470	Capacitor, electrolytic 47uF 16 V radial
C75	219-470	Capacitor, electrolytic 47uF 16 V radial
C76	219-470	Capacitor, electrolytic 47 uF 16 V radial
C77	219-102	Capacitor, electrolytic 1000uF 16V radial
C78	255-270	Capacitor, 27 pf 5\% NPO disc
C79	NOT USED	
C80	255-361	Capacitor, 360 pf 300v 5\% silver mica
C81	215-102	Capacitor, . $001 \mathrm{mfd} 2.5 \%$ 100v polypropylen
C82	255-361	Capacitor, 360 pf 300 v 5\% silver mica
C83	255-161	Capacitor, 160 pf 300v 5\% silver mica
C84	219-102	Capacitor, electrolytic $1000 u \mathrm{~F} 16 \mathrm{~V}$ radial
C85	256-680C	Capacitor, 68pF 5\% 200V ceramic dipped
C86	NOT USED	
C87	255-390C	Capacitor, 39pF 5\% 200V ceramic dipped
C88	219-102	Capacitor, electrolytic 1000uF 16 V radial
C89	290-525	Capacitor, variable trimmer 9-50 pF \#24AA0
C90	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C91	215-202	Capacitor, . 002 mfd 2.5% l00v polypropylen
C92	256-151	Capacitor, 150 pf 5\% NPO disc
C93	219-220	Capacitor, electrolytic 22 uF 25 V radial
C94	219-470	Capacitor, electrolytic 47uF 16 V radial
C95	219-470	Capacitor, electrolytic 47uF 16 V radial
C96	290-525	Capacitor, variable trimmer 9-50 pF \#24AAO
C97	219-102	Capacitor, electrolytic 1000uF 16V radial
D01	412-494	Diode, Germanium, 1N270
D02	412-494	Diode, Germanium, 1N270
ICO1	401-877	Integrated Circuit, National LM1877N-9
IC02	400-275	Integrated Circuit, OP-Amp OP275GP/OPA-260
ICO3	400-275	Integrated Circuit, OP-Amp OP275GP/OPA-260
ICO4	400-275	Integrated Circuit, OP-Amp OP275GP/OPA-260
ICO5	400-275	Integrated Circuit, OP-Amp OP275GP/OPA-260

Parts List
R-15C Audio Processing Board
MARTI 800-294 08-25-93

m	Marti No.	Description
IC06	400-275	Integrated Circuit, OP-Amp OP275GP/OPA-260
- 1 C 07	400-275	Integrated Circuit, OP-Amp OP275GP/OPA-260
IC08	400-275	Integrated Circuit, OP-Amp OP275GP/OPA-260
IC09	400-275	Integrated Circuit, OP-Amp OP275GP/OPA-260
IC10	400-275	Integrated Circuit, OP-Amp OP275GP/OPA-260
IC11	400-275	Integrated Circuit, OP-Amp OP275GP/OPA-260
L01	330-012	Inductor, 15 uH \#70-27
R001	145-472-1	Resistor, 4.7K ohm 1/4 watt 2\% RL07S472G
R002	145-202-1	Resistor, 2 k ohm $1 / 4$ watt 2% RL07S202G
R003	145-472	Resistor, 4.7K ohm $1 / 4$ watt 2% RL07S472G
R004	104-203	Potentiometer, 20 K ohm cermet trimmer vert
R005	145-472-1	Resistor, 4.7K ohm $1 / 4$ watt 2% RL07S472G
R006	145-102-1	Resistor, 1 k ohm 1/4 watt 2% RL07S102G
R007	145-472-1	Resistor, 4.7 K ohm $1 / 4$ watt 2% RL07S472G
R008	104-502	Potentiometer, 5 K ohm cermet trimmer verti
R009	145-202-1	Resistor, 2 k ohm 1/4 watt 2% RL07S202G
R010	145-202-1	Resistor, 2 k ohm $1 / 4$ watt 2% RL07S202G
R011	145-104	Resistor, 100 k ohm $1 / 4$ watt 5% metal film
R012	145-104	Resistor, 100 k ohm 1/4 watt 5% metal film
R013	145-202-1	Resistor, 2 k ohm $1 / 4$ watt 2% RL07S202G
R0	145-202-1	Resistor, 2 k ohm 1/4 watt 2% RL07S202G
R015	145-202-1	Resistor, 2 k ohm $1 / 4$ watt 2% RL07S202G
R016	145-202-1	Resistor, 2 k ohm $1 / 4$ watt 2% RL07S202G
R017	145-104	Resistor, 100k ohm 1/4 watt 5\% metal film
,R018	145-104	Resistor, $100 k$ ohm $1 / 4$ watt 5% metal film
R019	145-202-1	Resistor, 2 k ohm $1 / 4$ watt 2% RLO7S202G
R020	145-202-1	Resistor, 2 k ohm $1 / 4$ watt 2% RL07S202G
R021	145-223	Resistor, 22 k ohm $1 / 4$ watt 5% metal film
R022	105-502	Potentiometer, 5 K ohm cermet trimmer 1 tur
R023	145-102	Resistor, 1 k ohm $1 / 4$ watt 5% metal film
R024	145-184-1	Resistor, 180 k ohm $1 / 4$ watt 2% RLO7S184G
R025	145-104	Resistor, 100 k ohm 1/4 watt 5% metal film
R026	145-473-1	Resistor, 47 k ohm 1/4 watt 2\% RLO7S473G
R027	145-473-1	Resistor, 47 k ohm $1 / 4$ watt 2% RLO7S473G
R028	145-223-1	Resistor, 22 k ohm $1 / 4$ watt 2% RL07S223G
R029	145-104-1	. Resistor, 100k ohm 1/4 watt 2\% RLO7S104G
R030	145-104-1	Resistor, 100k ohm 1/4 watt 2% RL07S104G
R031	145-332-1	Resistor, 3.3 k ohm $1 / 4$ watt 2% RL07S332G
R032	145-223-1	Resistor, 22 k ohm $1 / 4$ watt 2% RL07S223G
R033	145-104-1	Resistor, 100k ohm 1/4 watt 2% RLO7S104G
R034	145-220-1	Resistor, 22 ohm 1/4 watt 2% RLO7S220G
R035	145-122-1	Resistor, 1.2 k ohm $1 / 4$ watt 2% RLO7S122G
R036	145-223-1	Resistor, 22 k ohm $1 / 4$ watt 2% RL07S223G
R037	145-104-1	Resistor, 100k ohm 1/4 watt 2\% RL07S104G
R038	145-220-1	Resistor, 22 ohm 1/4 watt 2\% RLO7S220G
R039	145-122-1	Resistor, 1.2 k ohm 1/4 watt 2% RLO7S122G
R040	145-471	Resistor, 470 ohm 1/4 watt 5\% metal film
R041	145-333	Resistor, 33 k ohm $1 / 4$ watt 5% metal film
R042	145-122-1	Resistor, 1.2 k ohm $1 / 4$ watt 2% RLO7S122G
R043	145-183-1	Resistor, 18 k ohm $1 / 4$ watt 2% RL07S183G
R044	145-183-1	Resistor, 18 k ohm $1 / 4$ watt 2% RL07S183G
R045	145-183-1	Resistor, 18k ohm 1/4 watt 2\% RL07S183G

Parts List
R-15C Audio Processing Board
MARTI 800-294 08-25-93

Item	Marti No.	Description	
R046	145-562-1	Resistor,	5.6 k ohm $1 / 4$ watt 2% RL07S562G
R04 7	145-333-1	Resistor,	33 K ohm 1/4 watt 2\% RL07S333G
R048	145-153-1	Resistor,	15k ohm $1 / 4$ watt 2% RL07S153G
R049	145-183-1	Resistor,	18k ohm $1 / 4$ watt 2% RL07S183G
R050	145-103-1	Resistor	10k ohm 1/4 watt 2% RL07S103G
R051	145-562-1	Resistor	5.6k ohm 1/4 watt 2% RL07S562G
R052	145-333-1	Resistor	33 K ohm $1 / 4$ watt 2% RL07S333G
R053	145-562-1	Resistor	5.6 k ohm $1 / 4$ watt 2% RL07S562G
R054	145-100	Resistor	10 ohm $1 / 4$ watt 5% metal film
R055	145-103	Resistor	l0k ohm $1 / 4$ watt 5\% metal film
R056	145-474-1	Resistor,	475 k ohm 1/4 watt 1\% RN55D4753F
R057	145-562-1	Resistor	5.6 k ohm $1 / 4$ watt 2% RL07S562G
R058	145-471-1	Resistor,	470 ohm $1 / 4$ watt 2% RL07S471G
R059	145-471-1	Resistor,	470 ohm 1/4 watt 2% RL07S471G
R060	145-471-1	Resistor,	470 ohm 1/4 watt 2% RL07S471G
R061	145-471-1	Resistor,	470 ohm 1/4 watt 2% RL07S471G
R062	145-030	Resistor,	3.3 ohm $1 / 4$ watt 5% metal film
R063	145-030	Resistor,	3.3 ohm $1 / 4$ watt 5% metal film
R064	145-223	Resistor,	22 k ohm $1 / 4$ watt 5% metal film
R065	145-223	Resistor,	22 k ohm 1/4 watt 5\% metal film
R066	145-104	Resistor,	100k ohm 1/4 watt 5\% metal film
R067	145-104	Resistor,	100 k ohm 1/4 watt 5% metal film
R068	145-104	Resistor,	l00k ohm 1/4 watt 5% metal film
R069	145-104	Resistor,	l00k ohm 1/4 watt 5\% metal film
R070	145-103	Resistor,	10k ohm $1 / 4$ watt 5\% metal film
R071	145-103	Resistor,	10k ohm $1 / 4$ watt 5% metal film
R072	145-472	Resistor,	4.7 k ohm $1 / 4$ watt 5% metal film
R073	145-103	Resistor,	10k ohm 1/4 watt 5\% metal film
R074	145-222-1	Resistor,	2.2 k ohm $1 / 4$ watt 5% RLO7S222G
R075	145-103-1	Resistor,	10 k ohm $1 / 4$ watt 2% RL07Sl03G
R076	145-103-1	Resistor,	10k ohm 1/4 watt 2% RL07S103G
R077	145-682-1	Resistor,	6.8 k ohm $1 / 4$ watt 2% RL07S682G
R078	145-183-1	Resistor,	18k ohm 1/4 watt 2% RL07S183G
R079	145-103-1	Resistor,	10k ohm 1/4 watt 2\% RL07S103G
R080	145-103-1	Resistor,	10k ohm 1/4 watt 2% RL07S103G
R081	145-103-1	Resistor,	10k ohm 1/4 watt 2% RLo7S103G
R082	145-682-1	Resistor,	6.8 k ohm $1 / 4$ watt 2% RL07S682G
R083	145-103-1	Resistor,	10k ohm 1/4 watt 2% RL07S103G
R084	145-123-1	Resistor,	12k ohm 1/4 watt 2% RL07S123G
R085	145-104	Resistor,	l00k ohm $1 / 4$ watt 5% metal film
R086	145-103-1	Resistor,	10k ohm $1 / 4$ watt 2% RL07S103G
R087	145-103-1	Resistor,	10k ohm 1/4 watt 2\% RL07S103G
R088	145-104	Resistor,	l00k ohm 1/4 watt 5\% metal film
R089	145-104	Resistor,	l00k ohm $1 / 4$ watt 5\% metal film
R090	145-104	Resistor,	l00k ohm 1/4 watt 5% metal film
R091	145-104	Resistor,	l00k ohm $1 / 4$ watt 5% metal film
R092	145-104	Resistor,	100 k ohm $1 / 4$ watt 5% metal film
R093	145-102	Resistor,	1 k ohm $1 / 4$ watt 5\% metal film
R094	145-104	Resistor,	l00k ohm $1 / 4$ watt 5% metal film
R095	145-104	Resistor,	100 k ohm 1/4 watt 5\% metal film
R096	NOT USED		
R097	NOT USED		

Parts List
R-15C Audio Processing Board
MARTI 800-294 08-25-93

Item	Marti No.	Description
R098	145-103	Resistor, 10 k ohm $1 / 4$ watt 5\% metal film
R099	145-183-1	Resistor, 18 k ohm $1 / 4$ watt 2% RL07S183G
-R100	145-183-1	Resistor, 18 k ohm $1 / 4$ watt 2% RL07S183G
R101	145-822-1	Resistor, 8.2 K ohm $1 / 4$ watt 2% RL07S822G
R102	145-104	Resistor, 100 k ohm $1 / 4$ watt 5% metal film
R103	145-104	Resistor, 100 k ohm $1 / 4$ watt 5\% metal film
R104	145-103-1	Resistor, 10 k ohm $1 / 4$ watt 2% RL07S103G
R105	145-104	Resistor, 100 k ohm $1 / 4$ watt 5% metal film
R106	145-030	Resistor, 3.3 ohm $1 / 4$ watt 5\% metal film
R107	145-472-1	Resistor, 4.7K ohm 1/4 watt 2\% RL07S472G
R108	145-471	Resistor, 470 ohm $1 / 4$ watt 5% metal film
	550-070	IC Socket, 8 pin E-CAM
	550-191	Connector, 2 Dual Pin Header
	800-294B	PC Board, Audio Processing
	550-125	Connector, 5 pin Molex Header
	550-182	Open Top Two Circuit Shunt Molex \#15-38-10
	550-069	IC Socket, 14 pin

MARTI ELECTRONICS CLEBURNE, TX 76033-0661	$\underbrace{}_{\substack{\text { ORRWI ING NO. } \\ \text { coprrioht } \\ \text { 8/5/93 }}} \mathbf{8 0 0 - 2 9 5}$	TITLE

Parts List
R-15C Metering Board
MARTI 800-295 08-25-93

'Item	Marti No.	Description
B1	510-196	Subminiature Lamp, \#IFL-LX2182
B2	510-196	Subminiature Lamp, \#IFL-LX2182
C1	268-102	Capacitor, . $001 \mathrm{mf} \mathrm{50v} \mathrm{Z5U} \mathrm{disc} \mathrm{-20+80} \mathrm{\%}$
D1	410-255	LED, Green rectangular \#351-6221
D2	410-155	LED, Red rectangular \#35BL510
D3	410-113	LED, Yellow rectangular \#351-6231
D4	410-113	LED, Yellow rectangular \#351-6231
D5	414-007	Diode, Fagor 1N4007
M1	030-044M	Meter, HS13 VU (black)
P1	550-149	Connector, 6 pin Molex Angle Header
P2	550-149	Connector, 6 pin Molex Angle Header
P3	550-158	Connector, 4 pin Molex Angle Header
P4	550-149	Connector, 6 pin Molex Angle Header
R1	101-502	Potentiometer, 5K ohm cermet RVG0911V513A
R2	104-203	Potentiometer, 20 K ohm cermet trimmer vert
R3	145-222	Resistor, 2.2 k ohm $1 / 4$ watt 5% metal film
R4	101-502	Potentiometer, 5K ohm cermet RVG0911V513A
R5	145-100	Resistor, 10 ohm $1 / 4$ watt 5\% metal film
R6	145-100	Resistor, 10 ohm $1 / 4$ watt 5% metal film
S1	530-059	Switch, rotary \#10WA135
S2	530-058	Switch, slide DPDT Switchcraft 11A1871
	800-295B	PC Board, R-15C Metering
-	513-033	Spacer, 4-40 x 13/16" hex threaded Concord
	500-055	Lockwasher, \#4 internal tooth small patter
	500-010	Screw, 4-40 x 3/8" phillips pan head M/S n
	500-120	Eyelet, MR24-CA-0 copper

MARTI ELECTRONICS CLEBURUE, TX 76033-0651		TITLE POWER SUPPLY/SQuELCH BOARD

Parts List

```
MARTI 800-219 07-29-93
```

Item	Marti No.	Description
CO 1	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C02	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C03	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C04	268-102	Capacitor, . 001 mf 50 v Z5U disc $-20+80 \%$
C05	219-472	Capacitor, electrolytic 4700uF 25 V
C06	219-200	Capacitor, electrolytic 22uF 25 V
C07	219-200	Capacitor, electrolytic 22uF 25 V
C08	219-200	Capacitor, electrolytic 22uF 25 V
C09	NOT USED	
C10	217-103	Capacitor, . 1 mf 100 v 10\% mylar
C11	217-103	Capacitor, .1 mf loov 10% mylar
C12	NOT USED	
C13	219-080	Capacitor, electrolytic 10uF 25 V
C14	217-103	Capacitor, . 1 mf 100v 10\% mylar
D01	414-007	Diode, Fagor 1N4007
D02	414-007	Diode, Fagor 1N4007
D03	414-007	Diode, Fagor 1N4007
D04	414-007	Diode, Fagor 1N4007
D05	414-007	Diode, Fagor 1N4007
D06	414-007	Diode, Fagor 1N4007
D07	410-110	Diode, zener, 1N4741A 11v
D08	414-007	Diode, Fagor 1N4007
D09	410-914	Diode, 1N4148
D10	410-914	Diode, 1N4148
D11	410-914	Diode, 1N4148
IC1	400-091A	Integrated Circuit, TI TLC271CP
IC2	400-293	Integrated Circuit, TI LM393P
IC3	400-317	Integrated Circuit, National LM317T
J1	550-165	Connector, 4 pin Molex Header
J2	550-125	Connector, 5 pin Molex Header
K1	570-035-1	Relay, Aromat HB2E-DC12V
Q1	NOT USED	
Q2	425-301	Transistor, Motorola 2N3904
R01	145-472	Resistor, 4.7 k ohm $1 / 4$ watt 5% metal film
R02	100-501	Potentiometer, 500 ohm cermet trimmer
R03	145-472	Resistor, 4.7k ohm $1 / 4$ watt 5% metal film
R04	145-433	Resistor, 43 k ohm $1 / 4$ watt 5% carbon film
R05	NOT USED	
R06	NOT USED	
R07	145-102	?esistor, 1 k ohm $1 / 4$ watt 5% metal film
R08	145-241-1	Resistor, 240 ohm 1/4 watt 2% RLo7S241G
R09	145-232	Resistor, 2.32 k ohm $1 / 4$ watt 1% metal film
R10	145-101	Resistor, 100 ohm $1 / 4$ watt 5% metal film
R11	145-103	Resistor, 10 k ohm $1 / 4$ watt 5% metal film
R12	145-331	Resistor, 330 ohm 1/4 watt 5\% metal film
R13	145-472	Resistor, 4.7 k ohm $1 / 4$ watt 5% metal film
R14	145-472	Resistor, 4.7 k ohm $1 / 4$ watt 5% metal film
R15	145-471	Resistor, 470 ohm $1 / 4$ watt 5% metal film
R16	145-103	Resistor, 10 k ohm $1 / 4$ watt 5% metal film
R17	100-522	Potentiometer, 5 k ohm cermet trimmer
R18	145-472	Resistor, 4.7 k ohm $1 / 4$ watt 5% metal film

```
Parts List
R-15C Power Supply
MARTI 800-219 07-29-93
\begin{tabular}{|c|c|c|}
\hline Item & Marti No. & Description \\
\hline R19 & 145-472 & Resistor, 4.7 k ohm \(1 / 4\) watt \(5 \%\) metal film \\
\hline R20 & 145-472 & Resistor, 4.7 k ohm \(1 / 4\) watt \(5 \%\) metal film \\
\hline R21 & 145-333 & Resistor, 33 k ohm \(1 / 4\) watt \(5 \%\) metal film \\
\hline R22 & 145-472 & Resistor, 4.7 k ohm \(1 / 4\) watt \(5 \%\) metal film \\
\hline \multirow[t]{6}{*}{R23} & 145-223 & Resistor, 22 k ohm \(1 / 4\) watt \(5 \%\) metal film \\
\hline & 520-051 & Heatsink, Thermalloy 6030B-TT \\
\hline & 550-070 & IC Socket, 8 pin E-CAM \\
\hline & 800-219B & PC Board, Power Supply R Receiver \\
\hline & 550-070 & IC Socket, 8 pin E-CAM \\
\hline & 550-161 & IC Socket, 16 pin Aromat \#AXS-1016137 \\
\hline
\end{tabular}
```


| MART I ELECTRONICS |
| :--- | :--- | :--- | :--- |
| CLEEBRNE, Tx |

Parts List
R-10 Input Filter Board
MARTI 800-193 07-26-93

Item	Marti No.	Description
C 01	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C 02	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
CO 3	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C04	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C 05	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C05	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C07	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C08	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C09	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C10	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C11	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
C12	270-220	Capacitor, monolithic chip, 22 pf 50v 5\%
C13	270-220	Capacitor, monolithic chip, 22 pf 50 v 5\%
C14	270-220	Capacitor, monolithic chip, 22 pf 50 v 5\%
C15	270-102	Capacitor, monolithic chip, $1000 \mathrm{pf} 50 \mathrm{v} 5 \%$
C16	270-102	Capacitor, monolithic chip, 1000 pf 50v 5\%
J1	550-170	Connector, D-Sub 15 pin Angle DN15P-R
JP1	550-192	Connector, 3 Dual Pin Header
JP1	550-191	Connector, 2 Dual Pin Header
JP2	550-184	Connector, 1 Dual Pin Header
L01	330-018	Inductor, 10 uH 43LQ105-1
L02	330-018	Inductor, 10 uH 43LQ105-1
L03	330-018	Inductor, 10 uH 43LQ105-1
L04	330-018	Inductor, 10 uH 43LQ105-1
L05	330-018	Inductor, $10 \mathrm{uH} \mathrm{43LQ105-1}$
L06	330-019	Inductor, Ferroxcube \#VK20010-3B
L07	330-018	Inductor, $10 \mathrm{uH} \mathrm{43LQ105-1}$
L08	330-018	Inductor, 10 uH 43LQ105-1
L09	330-018	Inductor, 10 uH 43LQ105-1
L10	330-019	Inductor, Ferroxcube \#VK20010-3B
L11	330-018	Inductor, 10 uH 43LQ105-1
L12	330-018	Inductor, $10 \mathrm{uH} 43 \mathrm{LQ105-1}$
L13	330-018	Inductor, 10 uH 43LQ105-1
L14	330-018	Inductor, 10 uH 43LQ105-1
L15	330-018	Inductor, 10 uH 43LQ105-1
L16	330-018	Inductor, 10 uH 43LQ105-1
P1	550-125	Connector, 5 pin Molex Header
P1	550-125	Connector, 5 pin Molex Header
P2	550-136	Connector, 6 pin Molex Header
P3	550-136	Connector, 6 pin Molex Header
T1	310-014M	Transformer, audio, \#671-9041
TB1	511-043B	Terminal, 2 point w/brackets
	550-182	Open Top Two Circuit Shunt Molex \#15-38-10
	500-004	Screw, 4-40 x 1/4" philiips pan head M/S n
	550-182	Open Top Two Circuit Shunt Molex \#15-38-10
	550-182	Open Top Two Circuit Shunt Molex \#15-38-10
	550-186	Connector, 3 Pin Molex Header
	550-182	Open Top Two Circuit Shunt Molex \#15-38-10
	550-182	Open Top Two Circuit Shunt Molex \#15-38-10
	800-193B	PC Board, I/O Filter STL-10 R-10

R-15C/100

The Model R-15C/100 is a synthesized $87.5-108 \mathrm{MHz}$ professional-quality receiver. It is of totally shielded, filtered, rackmounted construction with manually tuned RF pre-selection to avoid problems in high-level RF locations. (Additional preselectors may be required in relay applications.) Separate outputs are provided for 600 hm balanced mono audio, unbalanced composite, and subcarriers.

R-15C Features

- Synthesized (12.5 KHz steps), manual tuned preselectors.
- Excellent noise and distortion specs.
- High selectivity IF filters.
- 10 dB selectable input attenuator.
- Two year limited warranty.
- Selectable 0, 25,50, $75 \mu \mathrm{~s}$ de-emphasis in mono mode.
- Balanced $600 \mathrm{ohm},+10 \mathrm{dBm}$ mono audio output. (adjustable)
- BNC connector for 3.5 v P-P composite output. (adjustable)
- Metering and LED indicators for all important operating parameters.
- Squelch relay mutes all outputs with contacts for other switching.

List Price $\$ 1895.00$

Items Required for Typical Receiver Installation

1 R-15C receiver
1 High gain Yagi antenna cut to receiver frequency. (The height of this antenna determines receiving distance.)
X ft. of 50 ohm semi-rigid coaxial cable (LDF4-50) with connectors.
2 flex jumper cables for connecting receiver and antenna to semirigid coaxial cable.
1 installation kit K1 for bonding and weatherproofing connectors exposed to moisture.

R-15C Receiver Specifications

Frequency Range...........	$87.5-108 \mathrm{MHz}$
Sensitivity....................	2.2 microvolts for $50 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio (deemphasized, main channel) 7.1 microvolts for $60 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio
Input Impedance...........	50 ohms
Frequency Stability........	$\pm .00025 \%,-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Selectivity....................	Filter $\quad-3 \mathrm{~dB} \quad-60 \mathrm{~dB}$
	F250 $\quad 122 \mathrm{KHz} \quad 380 \mathrm{KHz}$
De-emphasis...............	Adjustable 0, 25, 50, $75 \mu \mathrm{~s}$ (mono only)
Spurious Response........	- 80 dB
Audio Output................	Balanced 600 ohms, +10 dBm , barrier strip. BNC connector for Composite output
Frequency Response.....	$\pm 0.1 \mathrm{~dB} 30 \mathrm{~Hz}$ - 55 KHz (composite output)
Noise.	-80 dB
Distortion.	0.1 \% THD
Composite Output Level.	3.5 volts peak-to-peak (adjustable)
Power Requirements......	$120 / 220$ VAC $^{*}, 50 / 60 \mathrm{~Hz}, 13.5 \mathrm{VDC}, .8$ Amps. *(Specify operating voltage)
AC Power Supply..........	Internal, precision, electronically regulated with current limiting
Automatic Changeover...	Provision for automatic changeover by adding an ARS-15A and an additional receiver
Accessory Connector.....	15 pin connector on rear panel provides filtered I/O, remote control, changeover, and external DC power
Metering.....................	Illuminated test meter indicates RF signal level, audio output level, subcarrier output level, $+13 \vee$ DC supply, L.O. level, mixer level. LED indicators for power, open squelch, composite mode, and AFC lock
Panel Controls..............	10 dB attenuation switch, mono level adjust, squelch adjust, meter switch, composite level adjust
RF Connector.	UG-58 (type N female)
Dimensions..................	$3-1 / 2^{\prime \prime} \times 19^{\prime \prime} \times 12^{\prime \prime}$ (HWD) ($8.9 \mathrm{~cm} \times 48.3 \mathrm{~cm} \times 30.5 \mathrm{~cm}$)
Weight........................	Net 8 lbs. Domestic packed 12 lbs. Net 3.63 kg . Export packed 5.45 kg .

